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Abstract 

It is widely believed that parallel computation will be the basis for the next major 

advance in computing speed. In reality, many difficult problems remain to be solved. 

Two such problems are addressed in this thesis: (1) the design of a parallel execution 

model that exploits desirable types of parallelism; and (2) the design of a resource 

allocator to map the parallel computation to hardware resources for processing, 

storage, and communication. 

The thesis presents a parallel execution model called PM for backward-chaining 

deduction with Horn clauses. For the target multiprocessor class, PM can exploit 

the most parallelism among existing execution models that use data-driven control. 

In particular, PM can exploit or-parallelism, and-parallelism, and pipelining. 

The target class of multiprocessors has the following properties: (1) there are an 

arbitrary number of MIMD processors; (2) each processor has some local memory 

but there is no global memory; (3) processors can communicate only by sending 

messages to each other; (4) message delay is a function of the amount of data in the 

message and the distance between source and destination; and (5) each processor 

can perform backward-chaining deductions based on the subset of the program that 

it contains. 

The proposed allocation strategy is used at compile-time and applies to any 

application and multiprocessor (in the target multiprocessor class). However, it 

needs some restrictions that PM does not require. First, the type of backward- 

chaining deduction is restricted. In particular, no recursive clauses are allowed, 

unit clauses must be ground, and certain probabilistic uniformity and independence 

assumptions must apply.  Second, a partitioning of the database is assumed to be 



given. 

The allocator consists of a greedy allocation phase followed by a local minimiza- 

tion phase. Both greedy allocation and local minimization are based on a formally 

defined cost function that quantifies intuitive notions of undesirable allocations. Al- 

gorithms are presented for the efficient computation and recomputation of this cost 

function. 

Considerable speedups are obtained by using this allocation strategy. These 

speedups compare favorably with an unreachable upper bound and speedups ob- 

tained using random allocations. 
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Chapter 1 

Introduction 

1.1    Motivation 

It is widely believed that parallel computation will be the basis for the next major 

advance in computing speed [45]. However, several difficult problems need to be 

solved. Two of these problems are addressed in this dissertation. The first problem 

is the design of execution models, or interpreters, that allow desirable types of 

parallelism to be exploited for certain types of computations. The second problem 

is the design of a resource allocator to map the parallel computation to hardware 

resources for processing, storage, and communication. 

Optimal allocation is ruled out as a viable option because even simplistic com- 

putation and multiprocessor models make the problem NP-complete or worse [43]. 

A practical strategy must have the following characteristics: (1) hard limits on re- 

sources must be observed, (2) trade-offs must be made among the three types of 

hardware resources for processing, storage, and communication, and (3) the algo- 

rithms used for accomplishing resource allocation must themselves be reasonably 

efficient. 

The type of computation being considered in this thesis is backward-chaining 

deduction [6]. This is the type of deduction employed in most extant logic program- 

ming languages. Prolog is a prime example. 
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Logical deduction is particularly attractive as a starting point for exploiting 

parallelism because (1) it has a well understood semantics that is completely inde- 

pendent of any computer architecture, be it sequential or parallel, and (2) it is not 

necessary for the programmer to be burdened with explicitly specifying the par- 

allelism or for the interpreter/compiler to use complex techniques to uncover the 

parallelism. These two advantages together imply that the programmer can pro- 

gram approximately as he would with a sequential computer. We say approximately 

because optional pragmas (or hints) may be given by the programmer to increase 

the efficiency of parallel execution. This is analogous to the situation in which the 

programmer may do some explicit memory allocation/deallocation and leave most 

of the memory reclamation task to the garbage collector. 

The rest of this chapter is organized as follows. Section 1.2 describes backward- 

chaining deduction. The next two sections describe the types of parallelism that can 

be exploited for this computation (section 1.3) and what is necessary to describe a 

parallel execution model (section 1.4). Section 1.5 describes the class of multipro- 

cessors considered in this thesis and gives some background on FAIM-1, the specific 

multiprocessor that was used for experimentation. Section 1.6 gives the definition 

of the allocation problem and some background on previous allocation research. 

Section 1.7 describes the overall structure of the allocator that is described in detail 

later in the thesis. Finally, the last section presents the overall structure of the rest 

of the chapters in this thesis. 

1.2     Backward-Chaining Deduction 

Backward-chaining [6] is an inference mechanism for automated deduction. It is 

used here in the context of a database of Horn clauses. An example of a Horn 

clause is: 

H :- Tl,T2,...,Tn 

where H and all Ti are positive literals (i.e., relation symbols with a list of terms). 

A term is a constant, a variable or a function of some terms.  All variable names 
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will start with an uppercase letter. All constants, function symbols and predicate 

symbols will start with a lowercase letter. H is also called the head of the rule and 

the set T1,T2,... ,Tn is called the tail of the rule. The meaning of the above Horn 
clause is: 

H is true if all of T1,T2,... ,and Tn are true. 

By definition, if H is non-null, the clause is called an assertion (or fact) when n 

is zero and it is called a rule when n is greater than 0. If H is null, the clause is 

called a goal. For example, 

:- G1,G2,.. .,G77i 

is a goal with m literals. The meaning of this Horn clause is that the conjunction 

given below needs to be solved. 

G1AG2A...AGTO 

Solving a goal means proving it true or false (in the sense of logical implication). 

If the goal is true, then values of the variables in the goal that make it true must 

be given. The value of a variable is called a binding. A set of values for a set of 

variables is called a substitution. 

An and-or tree is a problem reduction representation [7] used to represent the 

problem of proving a goal by backward-chaining. Figure 1 shows an example of 

a syntactic and-or tree used to represent a backward-chaining deduction. In this 

figure, ovals denote or-nodes and boxes denote and-nodes. And-nodes get their 

name because the goal they represent is one conjunct in a conjunctive goal set. 

Similarly, or-nodes represent a disjunct in a disjunctive goal set. Nilsson [48] gives 

a more formal characterization of and-or trees. Arcs are marked with the number 

of the clause used for the reduction. Also, a cut through the arcs going from a node 

to its children indicates that the children are and-nodes. The leaf nodes cannot 

be reduced. Leaf nodes may be empty boxes. These denote empty goals (i.e., 

successes). All leaf nodes in the example are empty goals. In other cases, a non- 

empty leaf indicates a failure. A logical inference is defined as the reduction of a goal 
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by a rule. In this example, substitutions that make the goal true are {X=a,Y=b} 

and {X=b,Y=a}. The discerning reader will notice that the former substitution 

can be obtained in two different ways (of proving the top level goal). 

We call the tree syntactic because certain subtrees may be instantiated multiple 

times during an actual execution. For example, if conjuncts are solved left to right, 

multiple solutions to "p(X)" will lead to as many instantiations of the subtree rooted 

at uq(Y)w. 

Some of the leaf nodes in the and-or tree end in failure and others end in success. 

The purpose of the backward-chaining inference procedure is to find either one or all 

nodes associated with success in the and-or tree. Each node represents a solution. 

Therefore, the computation is a search problem. In this thesis, we restrict our 

attention to the case in which all solutions are desired. 

The most widely used sequential interpretation is the one used by Prolog. The 

search through the tree is a depth-first, left-to-right search. Search is suspended 

for solutions to a subgoal when one solution is found. Search continues for the 

next solution by chronological backtracking from the next conjunct. When the 

first answer is obtained to the top level goal, it is announced. If more solutions are 

demanded, the search continues. Parallel approaches to interpretation are discussed 

in the next chapter. In particular, a parallel execution model called PMis described. 

PM exploits more types of parallelism than other execution models that use data- 

driven control and non-shared memory multiprocessor architectures. 

The computation studied in this thesis is very similar to Prolog but not identical. 

In particular, a couple of features that are part of Prolog are not allowed here. First, 

Prolog programs can change the database of horn clauses. Side-effects of this type 

are not allowed in this thesis. Second, Prolog programs allow "cuts"—a construct 

used to prune part of the search space. "Cuts" are not allowed in this thesis. The 

allocation strategy imposes additional restrictions on the computation as will be 

seen later. 
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Top level goal r(X,Y) 

Database     C1 r(X,Y):-p(X),q(Y)1s(X,Y). 

C2 r(X,Y):-f(X,Y),g(X),h(Y). 

C3 P(a). 
C4 P(b). 
C5 q(Y):-m(X),n(X,Y). 

C6 m(a). 

C7 m(b). 

C8 n(b,a). 

C9 n(b,b). 

C10 s(a,b). 

C11 s(b,a). 

C12 f(a,b). 

C13 g(a). 
C14 g(b). 
C15 h(a). 

C16 h(b). 

C3 
(m(X),n(X,Y)) 

12 L       C13/^Q14 C1 S^^^C 16 

Figure 1: A Syntactic And-Or Tree 
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1.3    Types of Parallelism 

Several types of parallelism have been described in the literature.  The list below 

may not be exhaustive but covers the well-known types. 

1. Or-parallelism: This is the solution of multiple or-nodes in parallel. There 

is some disagreement in the literature about the exact meaning of this. The 

most commonly used meaning [41], and the one used in this thesis, is that 

the entire search trees rooted at the or-nodes can be searched in parallel. In 

figure 1, the two sub-trees rooted at the two children or-nodes of the and-node 

"r(X,Y)" can be searched in parallel using or-parallelism. 

Conery [17,16] uses a slightly different meaning of or-parallelism. He defines 

or-parallelism as the assignment of a process to each or-node. Presumably, 

this meaning is neutral about the parallel search of the rest of the sub-trees 

below the or-nodes. 

2. And-parallelism: This is the parallel solution of sibling and-nodes. Note that 

this does not mean that the and-nodes must be solved in isolation from each 

other or that they must all be solved in parallel. In figure 1, the and-nodes 
ap(X)" and "q(Y)" may be solved in parallel using and-parallelism. 

3. Pipelining: This is the continuous streaming of complete solutions from one 

and-node to another. This is useful when two and-nodes must be solved in 

sequence. For example, pipelining allows the first solution of a source and- 

node to be sent to a destination and-node and allows the parallel search for 

(1) the first solution of the destination and-node and (2) the second solution 

of the source and-node. In figure 1, it m*y be the case that the and-nodes 

"m(X)" and "n(X,Y)" are solved in sequence. Using pipelining, solutions of 

«m(X)" can be streamed continuously to "n(X,Y)'\ The search for consistent 

solutions for "n(X,Y)" can begin as soon as a solution of "m(X)" is received. 

4. Search-parallelism: This is the parallel reduction of an and-node to its children 

or-nodes. The term "search" refers to the search for clauses whose heads unify 
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with the and-node. The actual solution of the or-nodes in parallel is called or- 

parallelism (as defined above). In figure 1, the literal "r(X,Y)w can be unified 

with the heads of the two relevant rules in parallel. 

5. Stream-parallelism: Conery [17] defines this as the "eager evaluation of struc- 

tured data, which can be treated as a stream". Conery cites the example of 

testing for membership in a list while the list is still being constructed. There 

is no example of this in figure 1 and this type of parallelism is not considered 

in this thesis. Examples of this can be found in the work of Shapiro [57] 

among others. 

6. Unification-parallelism: This is the parallelism associated with the unifica- 

tion of two literals. It has been shown that this problem is inherently non- 

parallelizable [20,74] (since it falls outside the problem class NC unless NC = 

FP). In attempting to exploit unification-parallelism, the hope is that prac- 

tical cases of unification-parallelism are more amenable to speedup. Again, 

this type of parallelism is not considered in this thesis. Examples of this can 

be found in the work of Citrin [13] and Robinson [53] among others. 

1.4    Parallel Execution Models 

A Parallel Execution Model for a sequential program and a multiprocessor contains 

the specification of (1) methods to generate a set of parallel processes, (2) the state, 

procedures, and inter-process communication for the set of processes, and (3) any 

constraints placed on how the set of processes must be run on the processors in the 

multiprocessor. 

The Parallel Execution Model is correct iff it produces the same solutions as the 

sequential program. 

Same can mean the same set of solutions or the same ordered set of solutions. 

In this thesis, we use the former meaning (i.e., the order in which the solutions are 

produced is not considered significant). 
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For example, the set of parallel processes shown in figure 2 might be able to 

perform the backward-chaining associated with the and-or tree shown in figure 1. 

The arrows in the figure show communication of data or control. As the figure also 

shows, the state, procedures, and messages associated with process "s(X,Y)", as 

well as all other processes, must be specified. In our case, the parallel execution 

model is said to be correct iff the set of solutions produced by it is equal to the set 

of solutions produced by the Prolog interpreter as described in section 1.2. 

A parallel execution model needs to exploit as much parallelism as possible while 

not being too complicated or expensive (in time and space) to be practical. These 

two requirements are clearly inconsistent, in general, and a reasonable tradeoff must 

be made. 

A dataflow representation of the computation is desirable for exploiting concur- 

rency. There are at least two important reasons. First, a dataflow representation 

of a computation makes all its parallelism explicit. Second, it has been argued 

convincingly that reasoning about dataflow programs for purposes of proving cor- 

rectness properties and allocation is easier than reasoning about other procedural 

representations [5,11]. 

Although, a dataflow representation is desirable, it is not so at any cost. For 

example, Fortran programs may be reformulated as dataflow programs but at the 

cost of extensive copying of structures. The same argument holds for any other 

procedural representation that allows modification of global state. Fortunately, for 

logic programs, it has been shown that they can be represented easily as dataflow 

programs (with indeterminate merge) if the types of parallelism to be exploited 

are or-parallelism and pipelining only (see work by Ciepielewski and Haridi [12], 

Lindstrom and Panangaden [41], and Singh and Genesereth [61]). Conery [15] has 

shown how to exploit or-parallelism and a restricted form of and-parallelism, but 

not pipelining. However, the control mechanism was not data-driven in nature, but 

was a variant on the sequential backtracking mechanism of Prolog. PM, the parallel 

execution model presented in this thesis, shows how to exploit all three types of par- 

allelism, or-parallelism, pipelining, and the same restricted form of and-parallelism 
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P(X) 
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described by Conery, while still using a data-driven solution. However, one more ex- 

tension, local state, bad to be made to dataflow (other than indeterminate merge). 

Local state makes the programs harder to reason about but the hope is that the 

reasoning is still far easier than it is for arbitrary procedural representations with 

global state (like Fortran). The resource allocation algorithms described in this 

thesis illustrate this ease of reasoning to some extent. 

On a different note, an important design consideration for the parallel execution 

model came from the target multiprocessor class. As mentioned before, any single 

processor may not have enough memory to store the entire program. Parallel exe- 

cution models like the Variable Supply Model [61] that require a complete copy at 

each processor are disallowed. 

1.5     Target Multiprocessor Class 

The target class of multiprocessors for this dissertation satisfies the following prop- 

erties: 

• There are an arbitrary, finite number of identical MIMD (multiple instruction 

stream, multiple data stream) [22] processors. No assumption is made about 

the speed of these processors. 

• Each processor has a finite amount of local memory; there is no global (or 

shared) memory. No assumption is made about the memory size except that 

the entire database must fit in the collection of memories of the processors 

in the system. The database is distributed over the processors. Parts of the 

database may be replicated. 

• Processors are connected with some interconnection topology. They can com- 

municate only by sending messages to each other. 

• Message delay is some function of the amount of data in the message and 

the distance between source and destination. In general, if the source and 

destination are not identical, there will be some non-zero delay. 
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• Each processor can perform backward-chaining deductions based on the subset 

of the database that it contains. 

An architecture that satisfies the multiprocessor scenario described above is 

FAIM-1 [18,68].x Quoting from one of the papers, the FAIM-1 architecture is 

claimed to be "consistent with high performance VLSI implementation and packag- 

ing technology, and is easily extended to include arbitrary numbers of processors". 

Another architecture that would fit the requirements is the Cosmic Cube [56]. 

Multiprocessors that do not fall in this class are the Encore Multimax [46] and 

the Connection Machine [35]—the Multimax because it is a shared-memory machine 

and the Connection Machine because it is a SIMD (single instruction stream, mul- 

tiple data stream) machine. However, it may be possible to make shared-memory 

multiprocessors like the Encore Multimax [46] behave like message-passing multi- 

processors by making appropriate changes to the operating systems. 

All the experiments described in this dissertation were done using a simulation 

of the FAIM-1 multiprocessor. At the level of abstraction used in the simulation, 

the multiprocessor is composed of a variable number of homogeneously replicated 

processing elements connected together with a 3-axis variant of a twisted-torus. A 

processing element is a processor with its own local memory. A 19 processor version 

would have the topology shown in figure 3. The topology is called an E-3 surface 

because there are 3 processing elements on each hexagonal edge. For the sake of 

simplicity, wrap-around connections for just one axis are shown. In the complete 

topology, two extra wires are connected to each processing element on the edge. 

Each processor ends up having 6 connections to its neighbors and a completely 

identical topological view of the rest of the processors. Quoting from the paper 

by Stevens [68], "this folding scheme results in ... a provably minimal diameter 

for hexagonal meshes." Another good feature of this topology is its scaleability. 

The number of processing elements on a surface is given by 3E(E — 1) +1, where E 

represents the E-size, or the number of processing elements on each edge. Therefore, 

the numbers of processors on different sizes of surfaces can be 1,7,19,37,61 and so 

1We are assuming, of course, that each processor will have the appropriate software to do 
backward-chaining deductions. 
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Figure 3: E-3 Processing Surface for FAIM-1 

on. 
The FAIM-1 multiprocessor has not been built yet but some rough estimates 

of its expected performance and configuration are given below. Each processor is 

medium-grained, larger than a Connection Machine [35] processor but smaller than 

a Symbolics 3600 workstation [44]. Each processor in the FAIM-1 multiprocessor 

is expected to perform at 20 KLIPS (1 KLIPS = 1 thousand logical inferences per 

second). Each processor will contain approximately 5 megabytes of memory dis- 

tributed over several specialized memory types. Communication delay is expected 

to be (2 + 2n + d) microseconds, where n is the number of packets in the message 

and d is the distance in hops from the source of the message to its destination. The 

packet size is 8 words and a word is 24 bits wide. 

1.6    The Allocation Problem 

We will assume for now that the computation is represented by a directed, acyclic 

graph (or DAG). Semantically, the graph is a dataflow graph with two exceptions. 

First, indeterminate merges are allowed.  Second, the nodes may have associated 
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local state and may manipulate this local state. However, in keeping with dataflow 

semantics, all computation is data-driven (i.e., triggered off at nodes by messages 

received along the arcs). This type of graph will be called a dataflow* graph in this 

thesis. The name indicates the similarity to dataflow and the "*" indicates that 

it is slightly different from dataflow. It will be shown in chapter 2 that PM, the 

parallel execution model, is based on dataflow* graphs. 

The allocation problem can be defined precisely now. It is finding the many-to- 

one mapping from the set of nodes in the dataflow* graph to the set of processors 

that gives the minimum completion time. 

Since the precedence constraints associated with the computation DAG can 

be arbitrary (as can be seen later in chapter 2), this allocation problem is NP- 

complete because a known NP-complete problem, namely Precedence Constrained 

Scheduling [27], is a special case (in which communication delays are assumed to 

be zero). It turns out that even more structured computations are NP-complete 

[43]. In any case, the implication for this thesis is that finding the optimal solution 

is impractical. Therefore, the allocation strategy suggested by this thesis is sub- 

optimal. However, the allocation algorithms used are shown to be polynomial-time 

in their worst case complexity. Yet, the allocations generated are found to exploit 

much of the parallelism present in the logic programs. 

In chapter 2, it will be seen that each node in the dataflow* graph is associated 

with a certain subset of the database, where the set of subsets is mutually exclusive 

and exhaustive. We will use the term partition for each of these subsets although 

this use of the term is a bit non-standard. Instead of thinking of the allocation 

in terms of mapping nodes of the dataflow* graph to processors, we can think of 

it as mapping partitions of the database to processors. Some partitions may be 

replicated for additional parallelism. Therefore, the mapping of database partitions 

to processors will be many-to-many in general. 
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1.7    Allocation Strategy 

The allocation strategy described in this thesis is a compih-time (or static) alloca- 

tion strategy. In other words, the compiler makes the decisions involved in map- 

ping tasks to processors. This strategy is in contrast to (1) run-time (or dynamic) 

allocation, in which the run-time or operating system performs the allocation or re- 

allocation, or (2) programmed (or user-defined) allocation, in which the user specifies 

the allocation. Compile-time allocation is not expected to be the best solution for 

all applications but it does compare favorably to the other two types in some ways. 

The disadvantage of run-time allocation is that the overhead is paid at run-time 

and it may be unacceptable. However, if the program behavior is highly dynamic 

and is hard to predict at compile-time, this may be the best approach. The dis- 

advantage of programmed allocation is that it places a big burden on the user and 

the allocation probably has to be repeated for every new machine architecture. The 

advantage, of course, is that the user may know much more about his program and 

how to allocate it than an automatic allocator. Of course, features of all three types 

of allocation may be combined. Given that so little is known about practical alloca- 

tion strategies, and almost nothing about hybrid strategies, this thesis concentrates 

on pure compile-time allocation. For logic programming, in particular, I do not 

know about any work on compile-time allocation so far. 

The (possibly) limited memory size of a processor affects the resource allocation 

strategy also. Allocation strategies like the one described by Sarkar [55], which 

depend on each processor being able to execute the entire program, are unacceptable 

here. 

The allocation strategy described in this thesis needs some restrictions that 

PMdoes not require. First, the type of backward-chaining deduction is restricted. 

In particular, no recursive clauses are allowed, unit clauses must be ground, and 

certain probabilistic uniformity and independence assumptions must apply. Second, 

a partitioning of the database is assumed to be given. 

Figure 4 gives a high-level view of the allocator strategy. There are two main 
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modules. One module, called the allocator module, performs the search for a suit- 

able allocation. Of course, since the search space is exponential, only a small part 

of it can be explored. The other module, called the cost computation module, com- 

putes the cost of a particular allocation being considered. Cost is a number that 

captures the relative poorness of an allocation. 

The cost function is formally denned and domain-independent (or application- 

independent).2 All the domain-dependent information required is given in the input 

Goal and Domain sizes and will be described in more detail in chapter 3. Also, the 

cost function does not apply just to a specific multiprocessor. The multiprocessor 

description is one of the inputs of the cost computation module. Again more detail 

is given in chapter 3. The cost function has two other important attributes. First, 

in an intuitive sense, the cost metric correlates well with intuitive notions of the 

relative poorness of allocations. This intuition is justified by experimental results 

obtained from an implementation of the allocator. Second, the algorithms to com- 

pute this cost function have polynomial-time worst-case complexity in the size of the 

computation. An exponential-time complexity would be considered unacceptable. 

The allocator module consists of two phases: (1) a greedy allocation phase and 

(2) a local minimization phase. Let us assume for now that each partition of the 

database is allocated to a single processor. The greedy allocation phase allocates the 

partitions of the database one at a time, allocating the latest partition to the least 

cost processor without re-allocating previously allocated partitions. This phase has 

polynomial-time worst case complexity. This is followed by the local-minimization 

phase. In this phase, partitions of the database may be re-allocated to neighboring 

processors if that reduces the cost. Let a round consist of a (possible) single re- 

allocation of each part of the program. Each round has polynomial-time worst 

case complexity. Obtaining a local minimum of the cost-function may take an 

exponential number of rounds, however. Fortunately, it turns out that the greedy 

-As used here, the term domain-independence means that the definition of the cost-function and 
the algorithms to compute it are the same regardless of the domain. However, certain inputs to 
the cost-function and the associated procedures may depend on the domain of interest. Smith [65] 
prefers to call this semi-independence saving the use of independence for cases where absolutely no 
domain dependent information is used. 
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Figure 4: Allocator Strategy 

allocation phase alone, or greedy allocation combined with a limited number of 

rounds of the local minimization phase, produces very reasonable allocations. 

1.8     Organization of Document 

Chapter 2 describes PM, the parallel execution model. Chapter 3 describes the 

cost-function that is the basis of the allocator. The chapter includes descriptions of 

algorithms to compute the cost-function and re-compute it for small changes in the 
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allocation. Chapter 4 describes the algorithms for allocation. The chapter includes 

results obtained from implementations of PM and the allocator. Finally, chapter 5 

presents a summary of the key ideas in this thesis and directions for future research. 
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Chapter 2 

PM: A Parallel Execution Model 

2.1     Introduction 

The parallel execution model described in this chapter is called PM. It is designed 

to exploit parallelism for backward-chaining deduction. In addition, PM is designed 

for a class of multiprocessors that includes non-shared memory among other features 

(see chapter 1 for more details). Side-effects to the database of facts and rules are 

not allowed during the computation in PM. 

A key feature of PM is that all control of execution is based on what we 

call dataflow* graphs. These are dataflow graphs [70] augmented with two non- 

dataflow features—indeterminate merge and local state. Dataflow* carries with it 

the dataflow advantage of decentralized control. No synchronization is required 

other than the flow of data. 

Several important types of parallelism have been identified for backward- 

chaining deductions [15,57]. The three that are exploited by PM are and-parallelism, 

or-parallelism, and pipelining. Or-parallelism is the simultaneous exploration of 

multiple paths to solving a single goal. And-parallelism is the simultaneous solution 

of multiple parts of a conjunctive goal. Pipelining also applies to the solution of 

constituent conjuncts in a conjunctive goal. It is the continuous streaming of solu- 

tions between a pair (or more) of conjunct solvers in sequence. Just as in pipelined 

19 
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computer architectures, pipelining can improve the throughput of processing. 

Unrestricted and-parallelism is usually not exploited because of its wasteful, 

combinatoric explosion. Various researchers have considered different methods of 

restricting and-parallelism [57,15,19,61,41]. The and-parallelism exploited by PM 

is of the type described by Conery [15], where conjunctive goals are not solved in 

parallel if they share variables. 

Conery's execution model exploited a combination of or-parallelism and and- 

parallelism [15]. Lindstrom et al. [41] and I [61}*used a combination of or-parallelism 

and pipelining. PM is unique in exploiting all three together for the class of archi- 

tectures described above while still using data-driven control. 

Resource allocation techniques are needed to determine (1) the distribution of 

the database over the processors and (2) the processor to use in the case of replica- 

tion of certain parts of the database. Clearly, this will strongly affect the efficiency 

of backward-chaining deductions. Chapters 3 and 4 will describe a specific resource 

allocation strategy for PM. 

This chapter is organized as follows. First, the general approach towards ex- 

ploiting parallelism is described in section 2.2. Next, PM, the parallel execution 

model advocated by this chapter is described in section 2.3. This section begins 

with an abstract description of PM, along with a proof of correctness, before plung- 

ing into some algorithmic details. Section 2.4 presents some extensions to the basic 

execution model. Finally, section 2.5 discusses some related work done by others. 

2.2    The Approach 

Section 1.2 described the standard sequential approach to backward-chaining de- 

duction. This section describes how the sequential execution model may be changed 

to exploit parallelism. 
Many different parallel interpretations of the and-or tree are possible. One could, 

of course, do everything in parallel. All or-nodes that are the children of an and-node 

can be solved in parallel (or-parallelism) and all and-nodes that are the children of 

an or-node can be solved in parallel (and-parallelism).   For and-parallelism, this 
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would mean running a process for each of the conjuncts in parallel. This would 

generate many solutions, most of which might fail if there were shared variables in 

the conjunct that must be simultaneously satisfied. Therefore, in general, it is a 

good idea to avoid this highly combinatoric explosion. 

The solution adopted here is to exploit all the or-parallelism but to take a more 

conservative position with respect to and-parallelism. Only those and-nodes that do 

not share any common variables are solved in parallel. Assume for now (until section 

2.4 on extensions to the basic execution model) that the solution of an and-node 

binds all the variables in the associated literal to ground terms (i.e., terms with no 

variables). Once and-nodes bind certain variables, then other and-nodes may stop 

sharing unbound variables and those nodes can then be solved in parallel. One can 

think of the and-nodes as being arranged in a directed, acyclic graph (DAG). Notice 

that each application of a rule in the database produces one such DAG. There is 

a one to one correspondence between the literals in the body of the rule and the 

nodes in the DAG. Two examples that satisfy the constraint described above are 

shown for the same conjunctive goal in figure 5. 

Solutions from nodes flow to their downstream neighbors which can then be 

solved in parallel. Solutions are sent in a continuous stream in contrast to the 

backtracking control of sequential and most parallel execution models. This is the 

essence of pipelining. 

In general, some possible DAGs for a rule application will be solved more ef- 

ficiently than others. In fact, this problem is analogous to ordering conjuncts for 

efficient sequential interpretation [64]. This problem is important but is not the 

subject of this thesis. In this thesis, a heuristic algorithm selects the DAG at run- 

time. The algorithm is described in appendix A. The input to the algorithm is a 

total order for a set of conjuncts—just as one would specify in Prolog, for example. 

The partial order generated by the algorithm is a minimal subset of this total order 

satisfying the constraint that conjuncts sharing unbound variables must be solved 

sequentially. Note that the chosen D.-1.G is, in general, different when different sets 

of variables get bound at rule application time. In addition, the specific DAG rep- 

resentation of the partial order is minimal (in the number of edges used).   The 
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h(X.YZU,V):-11 (X). t2(Y), t3(X,Y,Z). t4(Z.U), t5(Z,V) 

t1(X). t2(Y), t3(X,Y,2), t4(Z,U). t5(Z,V) 

DAG 1 

DAG 2 

Figure 5: Example DAGs 
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complexity of the algorithm is 0(n3), where n is the number of and-nodes. 

The database is distributed to the processors in the system according to three 

constraints. First, the set of clauses must be partitioned into mutually exclusive and 

exhaustive subsets such that each literal goal generated during backward-chaining 

can be reduced by a single subset. A partition that satisfies this constraint is 

simply a partition based on predicate symbols (of facts and consequents of rules). Of 

course, other partitions may be possible as well. Second, each subset, in its entirety, 

must be separately resident in the memory of one or more processors. Third, the 

distribution of the database is done completely before any goal is presented to the 

system. (There is no reason why run-time distribution of the database cannot be 

done. It is just that it is not explored in this thesis.) 

2.3    Basic Execution Model 

The basic execution model deals with a simplified view of the multiprocessor envi- 

ronment as well as of backward-chaining. The additional complexities are handled 

in the extensions to the basic execution model. 

The simplifications are as follows: (1) It is assumed that the set of clauses 

pertinent to reducing any particular goal are in a single processor. For example, 

if facts are partitioned on the basis of predicate symbols, all facts with a certain 

predicate symbol are in a single processor. (2) It is assumed that once the database 

is distributed over the multiple processors, there is no shortage of dynamic storage 

at individual processors during the computation.1 (3) Finally, it is assumed that 

all solutions to a goal bind all the variables in the goal to ground terms (i.e., terms 

not containing any variables). 

*It can be argued that this simplification violates the assumption of limited memory at each 
processor. In general, it is impossible to guarantee, even for sequential computations, that the 
amount of dynamic memory is sufficient for the given computation. In specific cases, for both 
sequential and parallel computations, it may be possible to guarantee that the amount of memory 
is sufficient. 
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2.3.1    Notation and Definitions 

Let < Ei, E2, ••-■)En > denote a tuple of elements Ex, E2,..., En. 

Let {Ei,E2, • • ■, En} denote a set of elements Ei, E2, • ■ •, En. 

Bindings of variables are given as Variablel = terml. Unification of two literals 

may result in a substitution given by a set of bindings. For example, 

Substitution! = {V2 = term2, VZ = termZ} 

The domain of a substitution is defined to be the set of variables whose bindings 

are given in the substitution. For example, the domain of the substitution {V2 = 

term2,VZ = termZ} is {^2,1^3}. Similarly, the range of a substitution is defined 

to be the set of variables that appear in the bindings of the domain variables. For 

example, the range of the substitution {V2 = VZ, V4 = V5} is {VZ, V5}. 

Two substitutions may be composed to produce a single substitution. For any 

two substitutions, 51 and 52, Compositional, S2) is defined only if the following 

two conditions hold: (1) The intersection of the domains of 51 and 52 is the null 

set and (2) The intersection of the range of 52 and the domain of 51 is the null 

set. In particular, what is allowed is for the domain of 52 to contain some variables 

belonging to the range of 51. For example, the two conditions are satisfied for the 

following case: 

51 = {X = Y,U = V} 

52 = {Y = P,V = Q} 

When the two conditions are satisfied, the Composition function is simply the union 

function for sets. In the example, the composition would be {X = Y, U = V, Y = 

p} y _ Q}. Also, two substitutions, 51 and 52 are equivalent if 52 can be obtained 

from 51 by replacing the binding of a variable belonging to 51, Varl = terml, 

by Varl = terml |WmKnff2, where binding2 belongs to 51 and |M„<«nfl2 indicates the 

application of binding binding2. For example, {X = F, U = V, Y = P, V = Q} is 

equivalent to {X = P,U = Q}. 
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2.3.2    Behavioral Description 

This section contains an abstract behavioral description of the basic execution 

model. The next section contains a proof of correctness of this description. As 

will be pointed out later in detail, extra structure will be added to this description 

to make it more suitable for an implementation. It is in this spirit that we will treat 

streams of messages as sets of messages (without an ordering) in this section and in 

the next one. 

The basic computation unit is a sequential process. Processes contain state and 

they are connected together by communication channels (abbreviated channels). 

Communication between processes takes place by sending a set of messages across 

each channel. Channels are directed. All messages that are sent at one end of a 

channel must arrive at the other end. Due to the correspondence between processes 

and channels with nodes and arcs respectively in a directed graph, the pairs of 

terms process/node and channel/arc will be used interchangeably in the rest of this 

chapter. 

Parallelism in the basic execution model is achieved by running different pro- 

cesses in different physical processors. Of course, more than one process may be 

mapped to the same processor due to resource constraints and communication re- 

quirements. The details of setting up processes on different processors will be de- 

scribed in the section on algorithmic details (section 2.3.4). 

We use the phrase behavioral description to denote a set of functions that take 

inputs and the current state as arguments and return outputs and a new state. A 

set of functions is needed because different types of incoming channels need different 

functions. 

A very high level description is given now for the parallel computation, with more 

details given in later paragraphs. There are three types of processes (represented 

by boxes) and six types of channels (represented by directed arcs) as shown in 

figure 6. All messages on all channels consist of a single substitution each. Each 

Normal process is responsible for solving one literal for a set of substitutions Sa. 

S\ is a function (to be described later) of the sets of substitutions that are received 

along the Input channels of the Normal process.   All solutions of the literal for 
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Figure 6: Types of Processes and Channels 

the Si substitutions are sent out on each of the Output channels of the Normal 

process. These solutions are obtained by the reduction of goals, represented by the 

application of substitutions in Si to the literal, by rules or facts. If a rule is used, a 

DAG of conjunctive subgoals may be obtained of the type shown in figure 5, each 

conjunct being represented by its own Normal process. The Head and Tail processes 

shown in figure 6 are used just for the initiation of computation associated with the 

DAG and the collection of solutions from the DAG. If a fact is used instead of a 

rule, one can just think of the DAG as being empty and the Head and Tail processes 

as being directly connected to each other. 

Other than Input and Output channels, there are Task, Subtask, Solution and 

Subsolution channels. A process can have at most one Task channel or Solution 

channel. Also, each Subtask channel has a corresponding Subsolution channel. In 

addition, no single process can have all types of channels. A Normal process, as 

shown in figure 7, can have Input, Output, Subtask, and Subsolution channels only. 

A Head process can have a single Task channel and some Output channels only 

as shown in figure 8. A Tail process can have some Input channels and a single 

Solution channel only as shown in figure 9. Each channel has a dual purpose when 

viewed from the perspective of the two processes it connects. In particular, the dual 

types have to be one of Input/Output, Task/Subtask, or Solution/Subsolution. 
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As mentioned before, the substitutions on the input channels to a normal process 

represent goals that the process must solve. In particular, all input channels to a 

normal process are functionally equivalent to just one hypothetical channel called 

the virtual input channel. Each substitution in the virtual input channel, when 

applied to the literal associated with a normal process, represents a goal that the 

process must solve. The set of substitutions in the virtual input channel is obtained 

by applying a function called CP to the sets of substitutions in the multiple input 

channels. Informally, CP computes the cartesian product of the sets of substitutions 

on the input channels and filters out inconsistent combinations of substitutions. The 

need for this filtering can be seen in figure 10. The binding of variable "X" in a 

substitution along the first input channel to process "d(X,Y,Z)" may be inconsistent 

with the binding of "X" in a substitution along the second input channel. This 

combination should be filtered out. 

The formal definition of CP is given now enclosed by the labels Begin formal 

definition of CP and End formal definition of CP.    Readers satisfied with the 

informal definition of CP given above may skip this detail safely. 

Begin formal definition of CP 

The formal definition of CP uses an auxiliary function Merge. The input 

to Merge is n substitutions ISi,IS2,...,ISn. The output is a substitution or 

a special element _L that is not a substitution. If there exists some variable V 

such that its binding in 75,- (1 < i < n) is V = b{ and its binding in ISj 

(1 < j < n) is V = bj and 6; ^ bh then Merge(ISuIS2,... ,ISn) =-L. Other- 

wise, Merge(ISi,IS2,... ,ISn) = Union(ISi,IS2,...,ISn). Union is the normal 

set union. The element J_ is used to indicate that inconsistent bindings of some 

variable exist in the substitutions. This is used in the definition of CP to filter 

out such combinations of substitutions. A couple of examples of Merge are given 

below. 

Merge({X = zl, Y = yl}, {X = xl,Z = zl}) = {X = xl, Y = yl, Z = zl} 

Merge({X = xl, Y = yl}, {X = x2,Z = zl}) =_L 

Note that all bindings are to ground terms as assumed earlier. 
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Figure 10: Filtering Substitutions 

The input to the function CP is n sets of substitutions ISSi,ISS2,...,ISSn. 

The output is a set of substitutions. 

CP{ISSuISS2,...,ISSn) 

= {Merge(eue2,...,en) | e1c/551,e2e/552,... ,eneISSn} - {1} 

"-" is used to denote set difference. 

As a specific example, 

CP({{X = xl, Y = 3/1}, {X = x2, y = y2}}, {{X = x2, Z = zl}, {X = x2, Z = z2}}) 

= {{X = x2,y = y2,Z = zl},{X = x2,y = y2,Z = z2}} 

J5n<f formal definition of CP 

We have seen that the set of substitutions in the virtual input channel is obtained 

by applying the function CP to the sets of substitutions on the input channels. It 

is in this sense that a single virtual input channel is equivalent to the multiple 

input channels to a normal process. Therefore, without loss of generality, we can 

complete the behavioral description of a normal process assuming just one input 

channel—the virtual input channel. 

Just as a normal process can have more than one input channel, it can have 

more than one output channel. The messages on all output channels are identical. 

Therefore, in addition to assuming just one input channel, we can assume just 

one (virtual) output channel to complete the behavioral description without loss of 

generality. 
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Normal 

Process 

Subtask 
•   •   • 

'Subsolution 
•   •   • 

Figure 11: Reduction of Goals 

As mentioned before, each substitution in the virtual input channel applied to 

the literal associated with a normal process is an input goal for the process to solve. 

The solution to each goal is also represented as a set of substitutions. The set of 

substitutions in the output channel is the union of the sets of solutions of the input 

goals. 

First, consider the case when the logic program contains only assertions to solve 

a particular input goal for a normal process. In this case, the goal can be solved 

immediately and sent out on the output channel of the process. 

When the logic program also contains rules, additional computation needs to be 

performed. All solutions found by using assertions are immediately sent on the out- 

put channel as before. For each rule that can be used to reduce the goal, unification 

is attempted between the goal and the head of the rule. If unification fails, nothing 

further needs to be done for this goal/rule pair. If unification succeeds, the substi- 

tution used for the unification is used to create a subgoal. The subgoal is simply the 

substitution applied to the tail of the rule. A matching pair of subtask/subsolution 

channels is created for the process as shown in figure 11. The input substitution 

that created the goal is kept in the process as state to be used later. The subtask 

channel carries just one element, an empty substitution, to start the solution of the 

subgoal. The subsolution channel brings back a set of solutions to the subgoal. 
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To make the solution of the subgoal possible, a two-terminal DAG of processes 

is set up between the subtask and subsolution channels. The graph is called two- 

terminal because it has two special nodes, an input node and an output node. The 

input node contains arcs to all nodes without any other inputs and the output node 

contains arcs from all nodes that do not have any other outputs. In our case, the 

input and output nodes are the Head and Tail nodes respectively. The DAG between 

the Head and Tail nodes is of the type shown in figure 5 for conjunctive goals. The 

DAG corresponds to the conjunctive goal that is obtained by instantiating the tail 

of the rule with the unification substitution. An example of such a two-terminal 

DAG is shown in figure 12. Notice that variables U and V have been renamed 

to U101 and V102. In fact, all variables in the rule must be "standardized apart" 

before unification [48]. When the subgoal graph is set up, a piece of state, called the 

Invocation-Substitution, needs to be stored in the Tail process. This is the subset 

of the substitution (resulting from unifying the goal with the rule) that contains 

bindings of variables in the goal (i.e., bindings of variables in the rule are ignored). 

Figure 12 shows the Invocation-Substitution, shown as IS in the figure, that needs 

to be stored for the example. Notice that this design decision leads to what might 

be called distributed binding environments. An alternative might have been to copy 

the complete environment and send it to the processes associated with the subgoal 

graph. However, the problem with copying is that the environments might get very 

large and the messages containing them may have excessive communication delays. 

The top level goal to the system is also represented like any other subgoal in 

the system (i.e., it is a two-terminal DAG of processes). For the top level goal, the 

Invocation-Substitution is empty. A top level goal is shown in figure 13. "{{}}" 

next to the task channel of the Head process indicates that the set contains just 

one element, an empty substitution. 

The purpose of the Head and Tail processes needs to be explained now. Both 

are not associated with any literal. 

The Head process merely serves as a router of data. When it receives an empty 

substitution along its subtask channel, it sends copies of the same on all its output 

channels. 
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Rule        a(W,x1 ,Y,Z) :- b(W,Y),c(Y,U),d(Y,V),e(U>V,Z) 

Goal       a(w1 ,X,Y,Z) 

Head 

{W=w1} 
a(W,X,Y,Z) 

•   •   • c^ 
b(W,Y) 

c(Y,U101) 

d(Y,V102) 

e(U101,V102,Z) Tail 

IS={X=x1} 

Figure 12: Example of Goal Reduction 

Solutions 4 

Figure 13: Top Level Goal 
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As mentioned above, the Tail process stores an Invocation-Substitution in its 

state. The Tail process receives substitutions along its input channels and it com- 

putes the cartesian product of the associated sets of substitutions like any other 

normal process. The rest of its behavior is different from a normal process. For 

each substitution on its virtual input channel, it sends a substitution on its solu- 

tion channel. The solution substitution is created by applying the Composition 

function to the Invocation-Substitution and the input substitution. As an exam- 

ple, consider figure 12 again. If the Tail process receives the input substitution 

{Y=yl,U101=ul,V102=vl,Z=zl}, then the corresponding solution substitution is 

{X=xl,Y=yl,U101=ul,V102=vl,Z=zl}. 

A normal process may have several subsolution channels, one for each of the 

subgoals created. The input substitution used to create the goal is kept as state 

in the process. When the process starts receiving substitutions along its subsolu- 

tion arcs, the following is done for each substitution: The Composition function is 

applied to the associated input substitution and the subsolution substitution. The 

resulting substitution is sent out on the virtual output channel. Subsolution sub- 

stitutions are processed in this manner as they arrive. If the order of arrival cannot 

be determined (when they arrive too close to resolve the difference in times), then 

they are processed in an indeterminate order. It is in this sense that we can say that 

the output channel of the process is created from the indeterminate merge of the 

solutions of its subgoals. As an example, consider figure 12 again. If a subsolution 

substitution for the given goal is {X=xl,Y=yl,U101=ul,V102=vl,Z=zl}, then the 

corresponding output substitution is {W=wl, X=xl, Y=yl, U101=ul, V102=vl, 

Z=zl}.2 

The graph that is generated in the process of goal reductions starting from the 

top-level goal is the dataflow* graph for the computation. Note that this graph is 

not present before run-time. Also, there is no need to have an explicit representation 

of this graph at run-time. However, algorithms, presented later in chapters 3 and 4, 

2Clearly, the bindings for variables U101 and V102 are not necessary. If required, these could 
have been pruned either by the Tail process or the Normal process. The current implementation 
leaves these bindings in because they provide useful information during program development. A 
production system should prune these bindings if its only goal is efficiency. 
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will be used to predict certain properties of these graphs for the purpose of resource 

allocation. 

2.3.3    Proof of Correctness 

Theorem 1 For deductions with a finite and-or tree, the set of solutions produced 

by PM is equal to the set of solutions produced by a Prolog interpreter. 

Notice that the Prolog interpreter was defined in section 1.2. To prove the 

theorem, we will prove two lemmas first. Before we get to the lemmas, a few 

definitions need to be stated. 

For a directed graph, a node Nl is defined to be a direct predecessor of node 

N2 if and only if there is an edge from Nl to N2. Similarly, a node Nl is defined 

to be an ancestor of N2 if and only if Nl is in the transitive closure of the direct 

predecessor relation of N2. If a directed arc goes from node A to node B, A is called 

the source node and B is called the destination node of the arc. Note that "node" 

and "process" are used interchangeably. 

Lemma 1 For each input channel to a process P, if the set of substitutions con- 

tained in the channel is equal to the set of solutions to the conjunctive goal CGI, 

where CGI is the set of the literal associated with the source process of the channel 

and all literals associated with the ancestors of the source process, then the set of 

substitutions in the virtual input channel of the process P is equal to the set of so- 

lutions to the conjunctive goal CG2, where CG2 is the set of literals associated with 

all the ancestors of the process P. 

Proof: The statement "For each input channel to a process P, the set of substi- 

tutions contained in the channel is equal to the set of solutions to the conjunctive 

goal CGI, where CGI is the set of the literal associated with the source process 

of the channel and all literals associated with the ancestors of the source process" 

in the first part of the lemma will be referred to as the correctness condition of 

the lemma. Assume for now that the process in question has two input channels. 

The proof can be easily extended to an arbitrary number of channels by induction 
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on the number of channels. Let the set of literals associated with the source pro- 

cess of the first channel and all its ancestors be {Cl,C2,...,Ci,Ci+l,...,Cm} and the 

corresponding set for the second channel be {Ci,Ci+l,.">Cm,Cm+l,...,Cn}. Call 

these two sets A and B respectively. Notice that the two sets have an arbitrary 

set of literals, {Ci,Ci+l,...,Cm}, in common. The set of ancestors of the process is 

given by the union of A and B, {Cl,C2,...,Cn}. Call this set C. We know that the 

solutions to C are exactly the same as the solutions of the bag, D, containing the 

sum3 of A and B considered as bags. This is true because a conjunctive goal with 

duplicate conjuncts is equivalent to a conjunctive goal with the duplicates removed. 

Therefore, the lemma is reduced to the statement that applying CP to the sets 

of solutions of A and B gives exactly the set of solutions to the conjunctive goal 

composed of A and B. This simplified statement will be proved by showing a subset 

relationship both ways. 

First, let us prove that every solution of the conjunction of A and B is a member 

of the result of CP. Let us pick an arbitrary solution Si. We know that any solution 

of a set of conjuncts must be a solution of a subset also. (This follows easily from the 

definition of the Prolog interpreter in section 1.2.) Therefore, Si must be a solution 

of A and it must be a solution of B. Of course, Si may contain a superset of the 

bindings required for A and B separately. In addition, the correctness condition of 

the lemma tells us that this solution must be a member of both the input sets of 

substitutions to the node. Actually, only the subset of Si relevant to A will be in 

the first channel. The same applies for B. If this is the case, then the definition of 

CP requires that the union of the two substitutions along the two channels (i.e., 

Si) be a member of the result of CP. 

Now, let us show the reverse subset relationship to prove equality of the two sets. 

We need to show that every member of the result of CP is a member of the solution 

set of the conjunction of A and B. Recall from the definition of CP that each 

member of the result of CP above will be the union of a substitution from the first 

channel and a substitution from the second channel. In other words, each member 

3Sum of bags is different from union of sets in the following way. The number of instances of a 
member of the sum is equal to the sum of the number of instances of the member in the bags whose 
sum is taken. 



36 CHAPTER 2.  PM: A PARALLEL EXECUTION MODEL 

of the result of CP is a superset of a substitution on the first channel and also a 

superset of a substitution on the second channel. Since the correctness condition of 

the lemma states that each member of the first channel is a solution of A and each 

member of the second channel is a solution of B, each member of the result of CP 

is a solution to A as well as B. Therefore, it is a solution of the conjunction of A 

and B. (This follows easily from the definition of the Prolog interpreter in section 

1.2.)ü 

Lemma 2 Consider a two-terminal DAG of processes in which the input node is a 

Head process, the output node is a Tail process, and the DAG in between is composed 

of normal processes. For this graph, sending the Head process an empty substitution 

will produce, at the virtual input of the Tail process, the set of solutions to the con- 

junctive goal composed of the literals associated with the normal processes provided 

that each process individually solves the goals input to it correctly. 

Proof:  The statement "each process individually solves the goals input to it 

correctly" in the last part of the lemma will be called the correctness condition of 

this lemma. 
We need to define the concept of distance of a process from the Head process. 

Let distance of 1 denote that there is a direct edge from the Head process to the 

process. A distance of n indicates that the maximum distance of a direct predecessor 

of the process is n - 1. Let the distance of the Tail node also represent the length of 

the graph. Notice that all such graphs have a finite length because they are DAGs. 

Now, the lemma is trivially true for all such graphs in which the graph length is 

2. In this case, there are a set of normal nodes in parallel after the Head node and 

there are edges from all these nodes to the Tail node. In this case, lemma 1 applies 

directly. 
Now, the induction hypothesis is that the lemma is true for graphs of lengths 

'   up to n. The induction step requires that we prove that the lemma is also true for 

graphs of length n + 1.  For a graph of length n + 1, consider all nodes that are 

direct predecessors of the Tail node. Replace one such node P by a new Tail node 

and consider the graph between this new Tail node and the original Head node. 
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The induction hypothesis can be applied to this graph because it has a length of 

n or less only. Therefore, the set of substitutions in the virtual input channel of 

the new Tail process is equal to the set of solutions of the associated conjunctive 

goal. This has an implication for the original graph. The set of substitutions in the 

virtual input channel of the node P (that is transformed to a Tail node) is equal 

to the set of solutions to the conjunctive goal represented by the set of nodes that 

are ancestors of the node P. Now, the virtual input channel of the node represents 

goals for the node. The correctness condition of the lemma states that all such goals 

are correctly solved. Therefore, the output channel of the node P (which is also an 

input channel of the original Tail process) will contain the set of solutions to the 

conjunctive goal of the literals represented by the node P and all its ancestors. The 

same can be claimed for all input channels of the Tail node. Now, we can apply 

lemma 1 to prove that the set of substitutions in the virtual input channel of the 

Tail node is equal to the set of solutions of the conjunction of all ancestors of the 

Tail node (i.e., all literals in the original graph).D 

Proof of Theorem 1: The dataflow* graph contains some normal processes 

whose solutions are produced by unification with facts directly and not by reduction 

to a DAG of processes obtained by applying a rule. If there were no such normal 

processes, the associated and-or tree would be infinite and the computation would 

never end. Let us refer to these nodes as nodes of level 1. In general, a node is 

defined to be of level n + 1 if and only if the maximum level of any node in any of 

its subgoal graphs is n. The maximum node level in the dataflow* graph is called 

the level of the graph. 

The theorem will be proved by induction on the level of dataflow* graphs. The 

theorem is trivially true for graphs of level 1 because lemma 2 applies directly. The 

induction hypothesis is that it is true for graphs of level up to n. We need to show 

that it is true for graphs of level n + 1. At the top level in this dataflow* graph is a 

two-terminal graph with some nodes of level n +1. For each such node, its subgoals 

contain nodes of level n or less. Therefore, each of its subgoals is correctly solved 

according to the induction hypothesis. Since the solution of the node is obtained 

simply by taking the indeterminate merge of the solutions of the subgoals, the node 
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itself is correctly solved. (Indeterminate merge produces the same solutions as the 

ones produced by backtracking using the Prolog interpreter denned in section 1.2.) 

Now, the application of lemma 2 proves that the top level DAG is also correctly 

solved. □ 

2.3.4    Algorithmic Details 

The description of the basic execution model that was presented in section 2.3.2 was 

complete in its own right. However, modification of certain peripheral details makes 

the implementation easier or more efficient. In addition, it is much too abstract for 

a direct implementation. In this section, we describe the additional features that 

are added to the abstract description and then describe specific choices made in 

terms of state, messages, and procedures. 

2.3.4.1    Additional features 

There are three additional features. First, messages along channels are treated as 

streams as opposed to sets. Second, messages contain more than just substitutions. 

Third, each stream of messages is terminated by a special end-of-stream message. 

Sets to Streams This is the most important additional feature. It is due to 

this feature that PM gets its dataflow flavor. Every channel contains a stream of 

messages. A stream is equivalent to an ordered set. In general, channels are not 

required to preserve the ordering of messages from their inputs to their outputs. 

Therefore, two messages that are sent in one order from the source process of a 

channel may arrive in another order at the destination process of the channel. 

Typically, messages do arrive in order. The advantage of not requiring in-order 

delivery is that message protocols can generally be simpler and faster. 

Computation at processes is triggered only by the arrival of messages and by 

no other mechanism. In particular, complete streams need not arrive for processing 

to begin. In this sense, a process behaves exactly like a node in a dataflow graph. 

However, as noted before, processes contain state whereas dataflow nodes do not. 
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In general, when an input message is processed, several output messages may 

be generated as described in the abstract behavior. These output messages are sent 

out on the appropriate output channels before the next input message is processed. 

The only place in the description where the order of input messages needs to be 

clarified is where the function CP is applied to the sets of substitutions on the input 

channels to produce a set of substitutions on the virtual input set. In particular, a 

new function CPnew needs to be defined that takes n input streams of substitutions 

and returns one stream of substitutions to be considered the virtual input stream. 

Streams are represented mathematically as tuples. CPnew is defined to be the 

composition of three other functions. 

CPnew = CPnewZ o  CPnewl o CPnewl 

CPnewl takes as input n streams of substitutions and returns one stream of 

n-tuples (of substitutions). Let the input streams be: 

< 5l,l, 5i,2, • • • »•?!,/,  > 

< 52,1 > $2,2, ■ • - ? Szj2 > 

< Sn,l,Snt2, ..., Snjn  > 

The lengths of the streams are /1? Z2, • ■ •, ln as shown. The virtual input stream 

is specified by the elements that it contains and a total order. The elements that it 

contains are all /1 x l2 x ... x /n n-tuples of the form: 

< '->l,t'i j '-'2,12 ) • • • 5 *^n,t„   > 

where 1 < ij < lj.   As can be seen from the prototypical tuple, its kth element 

comes from the kth stream for all k such that 1 < k < n. 

The order of the elements in the output stream is constrained only by a partial 

order to be described shortly. Since a total order is required for a stream, any 

particular total order that satisfies the partial order is acceptable. Two prototypical 
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elements PEl and PE2 are ordered if n - 1 of their constituent elements are the 

same and the nth is different. For example, 

PEl =< Shil,...,Sjtiil,...,Sn<in > 

PE2 =< SUl,...,Sj,ij2,...,5n,;„ > 

where the Sitj substitutions are as given above. In this c?ise, PEl will precede PE2 

in the output stream if and only if ijx < ij2. Similarly, PE2 will precede PEl in 

the output stream if and only if ij2 < iji. 

As a specific example, consider the case when there are two input streams. Let 

one input stream be represented by the tuple < 51,52 > and the other stream 

by < 53,54 >. There would be four elements in the output stream: < 51,53 >, 

< 52,53 >, < 51,54 >, and < 52,54 >. Let "^" indicate the ordering predicate. 

The ordering constraint described above would force the following partial order: 

< 51,53 >-« 52,53 > 

< 51,53 >^< 51,54 > 

< 52,53 >^< 52,54 > 

< 51,54 >x< 52,54 > 

Therefore, the output stream is one of either 

« 51,53 >, < 52,53 >, < 51,54 >, < 52,54 » 

or 

« 51,53 >,< 51,54 >,< 52,53>,< 52,54 » 

The motivation for this ordering constraint is that it is similar in spirit to the 

first-in-first-out and incremental processing that is used for a straight dataflow 

solution. This completes the definition of CPnewl.4 

4Notice that, strictly speaking, one would have to remove any duplicates in the output of CPnewl 
if one is to think of it as a set (or an ordered set). Typically, implementations of logic programming 
languages do not prune out duplicates in the interest of efficiency. In the same spirit, the implemen- 
tation of PM does not remove duplicates either. Therefore, if one is to be mathematically correct, 
the collections of substitutions along streams should be called bags (or ordered bags). 
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CPnew2 is applied to the output of CPnewl. CPnew2 takes one stream as 

its input and returns one stream as its output. Each element in the input is an 

n-tuple of substitutions. The output of CPnewl is a stream with exactly the same 

number of elements as the input stream. The elements of the output stream are 

obtained by applying the Merge function (used in the description of CP) to the 

corresponding elements of the input stream (i.e., elements in the same positions). 

Note that Merge takes n input substitutions and returns a substitution or a special 

element _L. The n input substitutions in this case are the n constituent elements 

of each element of the input stream to CPnewl. The Merge function is used, as 

before, for the purpose of filtering out bad combinations of substitutions. As an 

example, if the input to CPnewl were 

« {X = xl,Y = yl},{X = x2,Z = zl} >,<{X = x2,Y = y2},{X = x2,Z = zl} >, 

<{X = xl,Y = yl},{X = x3,Z = z2} >,<{X = x3,F = yl},{X = xZ,Z = z2} >> 

then the output would be 

<±,{X = x2,Y = y2,Z = zl}, J_,{X = xZ,Y = yl,Z = z2} > 

The output of CPnew2 is the input to CPnewZ. CPnewZ takes one stream 

as its input and returns one stream of substitutions as its output. The output of 

CPnewZ is exactly the same as its input except that all the ± elements are filtered 

out. All the non-_L elements in the input stream are retained in the output stream 

with the same order. As an example, if the input to CPnewZ were 

<±,{X = x2,y = y2,Z = zl},±,{X = xZ,Y = yl,Z = z2} > 

then the output would be 

<{X = x2,Y = y2, Z = zl}, {X = x3, Y = yl, Z = z2} > 

The output of CPnewZ is the output of the top-level function CPnew. This 

completes the definition of CPnew. The resulting stream obtained by an application 

of CPnew to some stream arguments will be called the cartesian product of the 

streams. 
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Message Content The message content is designed to not require any spe- 

cial messages to create processes initially. There is enough information in the 

messages that a process can be created when the first message for the process 

arrives.5 To make this possible, each message contains more than just a substi- 

tution. In fact, each message contains a task. A task includes a substitution as 

well as a two-terminal DAG of literals representing a conjunctive goal. The two- 

terminal DAG for a task along an input or output channel is the subgraph that 

can be reached from the channel up to and including the first tail node. For ex- 

ample, consider figure 12 again. Tasks along the channel from the Head node 

to the "b(W,Y)" node would include the nodes labeled "b(W,Y)'\ "c(Y,U101)", 

"d(Y,V102)", "e(U101,Vl02,Z)" and the Tail node. Similarly, tasks along the 

channel from the node labeled "b(W,Y)" to the node labeled "c(Y,U101)" would 

include the nodes labeled "c(Y,U101)", "e(U101,V102,Z)M and the Tail node. The 

two-terminal DAG for tasks on task/subtask channels is the graph for the entire 

conjunctive subgoal (including the Head and Tail nodes). The two-terminal DAG 

for tasks on the solution/subsolution channels is empty. 

End-of-Stream Message Another feature that is added in the detailed descrip- 

tion is end-of-stream messages. These are special messages that are sent on streams 

after the last regular message has been sent. The advantage of this feature is that 

the top level process can tell when it has produced the last answer. This is the 

only place in the description of PM that temporal ordering of messages on streams 

is necessary. There are many ways of doing this with much less overhead than the 

case in which all messages on a stream are required to be temporally ordered.6 

The rest of this section contains detailed descriptions of all the state, messages, 

and procedures required for the basic execution model. 

5It may still be the case that additional messages to set up later processes concurrently with 
processing of the earlier processes in the DAG may be more efficient. 

6For example, the end-of-stream message may include the number of messages that have been 
sent on the stream so far. The destination node must also keep a counter of messages received. 
When an end-of-stream message is received, its processing is postponed till the right number of 
regular messages is received first. 
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2.3.4.2    State 

Each processor, process and task has a system-wide unique name.7 In the rest of 

this thesis, typical names for processors, processes, and tasks will be of the form Pj, 

PSj, and Ti respectively. 

Each processor maintains the following state information on the tasks and pro- 

cesses for which it is responsible: 

Work-Set: This is a set of tasks that the processor may work on. 

Task: Each task is a 5-tuple of the form: 

<Task-Name,  Task-Description, Subtasks, Spawning-Process-Name, Parent-Task- 

Name> 

Task-Name is the system-wide unique name of the task. Task-Description is 

the description of the task. This field contains the substitution that was described 

earlier as the sole content of a message. This field will be described in more detail 

below. The cartesian product of input streams of tasks produces a single virtual 

input stream of tasks. The task description field of each task in the virtual input 

stream gets its substitution exactly as described in the behavioral description. For 

each task that is generated by the cartesian product function, the Spawning-Process- 

Name field is set to the name of the process that applied the cartesian product. This 

field is empty for any other tasks. Again, for every task in the virtual input stream, 

multiple subgoals may be created by the application of rules that can reduce the 

goal represented by the task. The reduced goals are represented as tasks and the 

name of each such reduced task is a member of the Subtasks field of the parent task. 

Similarly, child tasks (i.e., tasks that are produced by the goal reduction) have their 

Parent-Task-Name field set to the name of the parent task. Variables in the rule 

must be "standardized apart" before unification with the goal literal. 

Task-Description: Each is a tuple of the form: <CG, BL> 

CG (or Conjunct Graph) is a two-terminal DAG. BL is a substitution. The 

nodes in the graph are processes (as specified below). 

' All that is needed for this to work is that each processor have a unique name and each processor 
have a processor-wide unique name generator. Unique system-wide names for processes and tasks 
can now be generated by combining the system-wide unique processor name, where the process or 
task is to be generated, with a processor-wide unique name. 
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Process: Each is a 10-tuple of the form: 

<Process-Name, Literal, Processor-Name, Number-Inputs, Input-Queues, Outputs, 

Spawned-Task-Names, Type, Child-Task-Name, Invocation-Substitution> 

Process-Name is the system-wide unique name of the process. Literal is the 

literal that the process is responsible for solving. Processor-Name is the name of 

the processor where the process resides. Number-Inputs is the number of inputs 

to the process. Input-Queues are the queues of messages waiting to be processed 

at the inputs to the process. These queues contain additional state to (1) indicate 

whether the end-of-stream message has been received and (2) give the status of the 

cartesian product formation from the inputs (more later on this). Outputs are a 

set of tuples specifying the inputs of other processes. Each tuple is of the form 

<process-name, processor-name, input-number>. Spawned-Task-Names is a set of 

task names. The names correspond to tasks that are created by cartesian product. 

In case no cartesian product is necessary (when there is only one input), the unmod- 

ified task names from the inputs are directly included in Spawned-Task-Names. The 

Type of the process can be one of {Normal, Head, Tail}. The Invocation-Substitution 

has been described before. 

A complete process specification as given above is not necessary for each node 

in the conjunct graph of a task specification. A partial specification as given below 

is sufficient, "zzx" indicates an unspecified field. 

<Process-Name, Literal, Processor-Name, Number-Inputs, xxx, Outputs, xxx, Type, 

XXX, xxx>. 

The unspecified fields are Input-Queues, Spawned-Task-Names, Child-Task- 

Name and Invocation-Substitution from left to right. 

Notice that the Processor-Name field is included. In particular, this means that 

a process that creates a subgoal/subtask must bind all processes in the conjunct 

graph of the subtask to specific processors. In case multiple choices exist (when 

certain subsets of the database are replicated), resource allocation procedures must 

be invoked to make the choice. 
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2.3.4.3 Messages 

Messages are 4-tuples of the form: 

<Message-Type, Source-Processor-Name, Destination-Processor-Name, Arguments> 

For now, only one message type is required.   More types are required for the 

extensions to the basic execution model. The type needed now is Input- Task. For 

this, the Arguments field is a tuple of the form: 

<Destination-Process-Name, Destination-Input-Number, Task-Name, Task-Description> 

The fields have self-explanatory names. End-of-stream is indicated with "EOS" 

as the substitution in the Task-Description. 

2.3.4.4 Procedures 

As mentioned before, the database of rules/assertions is distributed before any goal 

is ever presented to the system. Also, all rules/assertions that can be used to 

reduce any particular task are in a single processor. It turns out each processor in 

the system need not have the complete partitioning information at run-time. Even 

the partitioning information may be distributed. A processor needs to know only 

the identity of processors that can be used to solve each literal in the tails of the 

rules that it contains (i.e., each literal in the conjunctive subgoals that it generates 

itself). The processor that is given the top level goal must know the identity of all 

processors relevant to solving each literal in every goal that may be presented to 

the system. 

When a process on a processor creates a subtask, the Head and Tail processes 

associated with the subtask are created at the same processor. The message con- 

taining an empty substitution to the Head process can be replaced by a function 

call. Similarly, the output messages from a Tail process on its solution stream 

may be replaced by function calls since the destination of the messages is the same 

processor. Therefore, messages are needed along input and output channels only. 

Messages along other types of channels can be replaced by function calls. 
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As mentioned before, every task on an input/output channel contains the two- 

terminal DAG that can be reached from the channel. Therefore, DAGs in tasks 

input to a process must have their input node "stripped off" to obtain the DAGs 

that must be output from the process. The cost of this procedure is simply the cost 

of traversing the two-terminal subgraphs that can be reached from the outputs of 

the process. 

The cartesian product function was described earlier. One interesting feature of 

this function is that it can be computed "incrementally". As messages arrive on the 

input channels of a process, they are kept in a FIFO queue. Consider the situation 

when there are some messages in the queues and a message arrives on one of the 

channels. The virtual tasks that can be created out of the combination of this task 

with the tasks waiting in other queues may be immediately computed. Of course, 

the order of these newly generated virtual input tasks on the virtual input stream 

must satisfy the order prescribed by the cartesian product function. Clearly, if the 

cartesian product function is going to be computed incrementally, then some state 

needs to be kept to indicate the extent to which the cartesian product has been 

computed at any given time. 

As mentioned before, the last message on each stream is a special end-of-stream 

message. Special care must be taken to send these messages only when all other 

messages have been sent on a stream. In particular, a normal process will send end- 

of-stream messages on its output channels (one on each) when the conjunction of the 

following three conditions is satisfied: (1) All input channels have received an end- 

of-stream message. (2) All tasks on the virtual input stream have had their subtasks 

created. (3) All subsolution channels have received an end-of-stream message. For a 

Tail process, since there are no subsolution channels, condition (2) may be left out. 

In addition, the end-of-stream message is not sent on any output channel (since the 

Tail process does not have one) but it is sent on the solution channel. In the case of 

Head processes, only one input message is received on the task channel. Therefore, 

the end-of-stream need not be sent explicitly. For messages output from a Head 

process, each channel carries two messages exactly—an input-task message and an 

end-of-stream message. 
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Figure 14: An Example Database 

2.3.5    A Complete Example 

As mentioned before, a dataflow* graph is the graph of process nodes that is gener- 

ated during the execution of PM. However, just as a syntactic and-or tree is easier to 

view than a complete and-or tree, a syntactic version of the dataflow* graph is eas- 

ier to comprehend. In the syntactic version, a process is connected (by subtask and 

subsolution channels) to a single copy of the subgoal graph for each rule/assertion 

that applies to the literal associated with the process. 

Consider the example database shown in figure 14. The distribution of the 

database is also indicated in the figure. In the example, the database is partitioned 

on the basis of predicate symbols and each subset is resident on a single processor. 

A graphical abbreviation is used to reduce the complexity of the dataflow* graph 

of the example. This abbreviation is shown in figure 15. 

The syntactic dataflow* graph associated with the database for the query r(X,Y) 

is shown in figure 16. Solid boxes indicate processes. The literals inside the boxes 

are the literals to be solved by the processes. The exceptions are the Head and Tail 

process pairs which are shown as boxes with "H/T" inside. Dashed lines around sets 

of boxes indicate that those processes reside in the same processor. The name of the 
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Figure 15: Graphical Abbreviation for Dataflow* Graphs 
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processor is indicated as a name of the form Pi. Arcs that cross dashed lines indicate 

streams of input-task messages. Task names (of the form Ti) are written next to the 

arcs. "," indicates temporal sequencing. Arcs inside dashed lines indicate function 

calls within the same processor to set up child tasks (downward arcs) and to send 

solutions to parent tasks (upward arcs). 

The top level task is Tl at processor Pi. It turns out that it has only one literal 

"r(X,Y)" to solve. In general, there could be an arbitrary number. 

Notice a couple of different dataflow* subgraphs for child tasks. The conjunctive 

goal "p(X),q(Y),s(X,Y)" leads to the conjunct graph with "p(X)" and "q(Y)" solved 

in parallel followed by "s(X,Y)'\ In the case of the conjunctive goal "m(X),n(X,Y)", 

the two literals must be solved sequentially because they share the variable "X". 

Finally, figure 17 shows some abbreviated task descriptions. To avoid cluttering 

up the figure, task tuples have been abbreviated to the shortened tuples 

< Task-Name,BL,Parent- Task-Name, CG> 

where BL is the associated substitution and CG is the conjunct graph. 

The sample task shown on top contains mnemonic field names to make it easier 

to decode the fields in the examples. In addition, the process nodes in the CGs (or 

Conjunct Graphs) are abbreviated to just the associated literals. The Invocation- 

Substitution for Tail nodes is shown directly below the boxes representing them. 

Tl is the task representing the top-level goal. T2 and T3 are two solutions 

for the top-level task. T4 is the end-of-stream message for the solution stream 

associated with Tl. In fact, the last task in each stream (except streams going to 

Head processes) is a similar end-of-stream message. 

A child task such as T33 gets a variable renamed X101 uniquely because variables 

in rules are "standardized apart" before unification with goals. 

Each process is responsible for solving the input node in the conjunct graph of 

each task on its input streams. The outgoing tasks are, therefore, the incoming 

tasks with the input node "peeled off". For example, look at task T47 and task 

T49. In general, "peeling off" the input node of a task can create multiple tasks. 
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Figure 16: Dataflow* Graph for Example 
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<   TN,     BL, PTN, CG  >        Sample Task 

<   T1.      0. nil, Head r(X,Y) Tail 

<   T2,     {X=a,X101=b,Y=b},    nil,      nil > 

<   T3,     {X=b,X101=b,Y=a},    nil,      nil > 

IS={} 

<   T4,      EOS. nil,      nil > 

<   T16,   0. 

<   T33,   0. 

<   T47,   0. 

<   T49,   {X101=a}, 

<   T50,   {X101=b}, 

<   T52,   {X101=b,Y=a}, 

<   T62,   {Y=a}, 

nil, 

T16 , 

nil, 

nil, 

nil, 

nil, 

is^IF 
T50,   nil > 

q(Y)   —' ► s(X,Y) — * Tail        > 
IS-0 

Head — ► m(X101) —* n(X101.Y) —► Tail 
IS={} 

m(X101)   —*n(X101,Y) 

n(X101,Y)—►Tail      > 

IS={} 

IS»{} 

n(X101,Y) —► Tail 
IS={} 

Tail      > 

Figure 17: Some Abbreviated Task Descriptions 
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The Composition function is applied to pairs of (1) substitutions received by 

a process on its input tasks with (2) substitutions received from the solution of 

the child tasks. The composed substitutions are sent out with the outgoing tasks. 

For example, observe how the result of Composition, from its application to the 

substitution in input task T50 and the substitution in T62, is the substitution in 

output task T52. 

Cartesian product of multiple input streams at a process creates new tasks with 

new names. T37, T38, T39, and T40 are skipped in the task numbering shown 

in figure 16 because they are created internally in processor P6 from the cartesian 

product of T18, T19 and T21, T22. 

2.3.6     Remarks on Efficiency 

This section contains comments on some efficiency issues related to the basic exe- 

cution model. 

Distributed Environments: As described earlier, substitutions of tasks on vir- 

tual input streams are retained in a process when subgoals are set up. This is 

the distributed environment approach. An alternative would be to send complete 

copies of environments to child tasks. This could be accomplished by replacing 

the substitution field, as it stands currently, by a stack of substitutions. However, 

the disadvantage with the "copying" approach is that communication costs will be 

higher and perhaps unacceptable. The disadvantage of distributed environments is 

that subsolutions must be returned to the process generating subtasks so that the 

Composition function may be applied to the input substitutions paired with the 

subsolution substitutions. 

Number of Tasks Generated: In the example shown in section 2.3.5, 66 tasks were 

generated. If a sequential Prolog interpreter were used with the same database, the 

number of logical inferences8 used would have been 15. One might ask if the 66/15 

ratio of the number of tasks to the number of sequential logical inferences reflects 

on the inefficiency of the model.   As it turns out, the 66/15 ratio is completely 
8A logical inference is denned to be a successful reduction of a literal goal by either one assertion 

or one rule. 
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misleading.   The number of tasks generated in a dataflow* graph is not a good 

indicator of the cost of the model as will be shown below. 

Several simple optimizations can be used to do away with a large number of 

tasks entirely and many other tasks involve trivial amounts of computation. In 

particular, end-of-stream tasks need not be sent separately. Each end-of-stream 

task can be piggybacked on the last regular task sent on the stream in question. 

Another optimization is to replace tasks on the solution channels of Tail processes 

with function calls. Since each such function call involves very little work (i.e., 

Composition of two substitutions or checking whether an end-of-stream task should 

be sent on the output streams of the normal process), we will ignore these in the cost 

calculation. Also, the Head nodes merely serve as routers of data. Therefore, tasks 

on the task channels of Head nodes will be ignored as well in the cost calculation. 

Also, tasks on the input channels to Tail processes lead only to cartesian product 

but not to any logical inferences. We will ignore these tasks as well. The cost 

of cartesian product, in general, will be considered separately later in this section. 

After having removed all tasks from the example that are to be ignored as described 

above, we notice that only 10 tasks remain for which logical inferences may need to 

be performed. These tasks are T5, T14, T16, T18, T19, T21, T22, T47, T49, and 
T50. 

However, to make a comparison of cost between PM and sequential Prolog, 

even this number of tasks remaining can be misleading. One should really consider 

the number of logical inferences that are associated with the remaining tasks. On 

doing the arithmetic, we find that, in this particular case, the number of logical 

inferences in the example is also 10. Notice that this is less than the number of 

logical inferences (15) in the sequential Prolog case. 

The number of logical inferences in dataflow* graphs is highly dependent on 

the partial order that is chosen for conjunctive goals. By choosing a bad partial 

order, it is possible to have a higher number of logical inferences in dataflow* 

graphs compared to sequential Prolog. It also turns out that if no and-parallelism is 

exploited, and the only parallelism exploited is or-parallelism and pipelining, then 

the number of logical inferences is identical for both PM and sequential Prolog. 
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Also, as shown in the example, if the partial orders are chosen carefully, then the 

number of logical inferences can be reduced. 

In addition to reducing the number of tasks, one can also reduce the number of 

processes. In particular, since Head processes are used as data routers only, they 

do not have to be created explicitly. Also, both Head and Tail processes, created 

when an assertion is used to reduce a literal goal, may be removed because there is 

an empty DAG between them. 

Cost of Decomposition: Partial orders need to be generated for conjunctive goals. 

As mentioned before, these partial orders are of the same type used by Conery's 

execution model [15]. Therefore, his algorithm for partial orders can be used directly 

here. Also, appendix A describes another algorithm that is used in PM along with 

the associated cost. 

Trade-off between Space and Time: Non-shared memory architectures (like dataflow 

architectures [70] and distributed systems [38]) have the property that extra space 

may be consumed in the attempt to reduce time of execution. This can happen if, 

for example, two parallel operations, 02 and 03, have a dataflow dependency on 

the result of an operation, 01. If memory is not shared and all three operations are 

on different processors, then copies of the result of 01 must be sent to the proces- 

sors associated with 02 and 03. In a shared memory architecture, the processors 

associated with 02 and 03 could simply read a single copy of the result 01 from 

shared memory. The target architecture of PMdoes not have shared memory either 

and, therefore, shares this property. 

Cost of Cartesian Product of Streams: As was pointed out before, cartesian 

product of streams requires extra memory compared to the sequential Prolog exe- 

cution. In particular, taking the cartesian product of streams requires space equal 

to the sum of the lengths of the individual streams. In addition, the number of 

elements in the cartesian product may be equal to the product of the lengths of 

the streams in the worst case. Notice that the worst case is reached only when no 

composite binding leads to any inconsistent bindings. 

In addition, the processing cost associated with the cartesian product function is 

of the order of the product of the lengths of the streams. The situation is alleviated 
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somewhat by the fact that the constants involved in the processing cost are fairly 

low. In particular, the most costly processing operation is checking to see whether 

a composite substitution has consistent bindings. Even more importantly, however, 

one can save on more costly logical inferences by using PM as illustrated in the 

example. 

In conclusion, there is a cost to taking the cartesian product of streams and this 

could be substantial in the worst case. However, the additional parallelism gained 

may outweigh the cost. The total number of logical inferences may be reduced as 

well and this may make PM an attractive option for sequential processors in some 

cases. The example given earlier in section 2.3.5 illustrates the effect of reduction 

in the number of logical inferences compared to the sequential Prolog execution. 

Resource Allocation: As mentioned before, the design of parallel execution mod- 

els is just one of many difficult problems that must be solved to make multiprocess- 

ing a success. Resource allocation is one such problem. Notice, however, that this 

is not a problem restricted to this particular parallel execution model. 

2.4    Extensions to Basic Model 

Three extensions to the basic execution model are described in this section. The 

first two deal with handling storage constraints due to large databases and long 

streams. The third extension deals with non-ground bindings of variables. 

2.4.1    Handling Storage Constraints 

2.4.1.1    Large Databases 

As mentioned before, the basic execution model deals with the case where all clauses 

that can be used to reduce any particular atomic proposition goal reside in a single 

processor. One can achieve this if, for example, one partitions the database on the 

basis of the predicate symbol of the head of the clause. Each partition is mapped 

onto a single processor. 
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Of course, it is possible that a particular partition may not fit in a single proces- 

sor due to memory constraints. In addition, one may want to spread a partition over 

many processors to exploit the parallelism in a single backward-chaining step. The 

goal proposition may be unified in parallel with the heads of the relevant clauses 

and subtasks may be created in parallel. 

The solution is to maintain a single processor as being responsible for each 

partition (as before). However, instead of the clauses in a partition physically 

residing in the responsible processor, the clauses are distributed over a certain 

neighborhood of the processor. One could, for example, distribute the partition 

over all processors within some number of message hops away from the responsible 

processor. 

Two extra message types are required now to make the subtask creation and 

solution collection possible. The message types are Do-Task and Done-Task. 

The Arguments field of the Do-Task message type is of the form: 

< Task-Name, Task-Description, Source-Process-Name> 

Task-Name is the name of the task that needs to be worked on. Task-Description 

is its description. Source-Process-Name is the identity of the process that is sending 

the message. 

The Arguments field of the Done-Task message type is of the form: 

<Task-Name, Child-Task-Name, Destination-Process-Name, Solution> 

Task-Name is the name of the task that was originally received from the process 

with name Destination-Process-Name. Child-Task-Name is the name of the child- 

task of Task-Name that was created and Solution is the substitution that is being 

reported as an answer to Child-Task-Name. Again, end-of-stream may be indicated 

by an "EOS" in the Solution field. 

The messages are used in the following way. Processes still reside at the processor 

responsible for the relevant partition. The relevant partition is the one that is 

relevant to solving the atomic proposition associated with the process. When a 

process receives an input-task message, it finds the incremental cartesian product 

as before. The new tasks are, however, not solved locally. They are sent to the 

neighborhood associated with the relevant partition around the processor using 
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Do-Task messages (i.e., each processor in the neighborhood receives a copy of the 

Do-Task message). These processors in the neighborhood create subtasks just as 

the single responsible processor would in the basic execution model. The difference is 

that solutions must be communicated back to the responsible processor using Done- 

Task messages. End-of-stream is indicated as before with the Solution argument set 

to "EOS". The difference here is that each processor in the neighborhood, including 

those that cannot create any solutions or subtasks, must report to the responsible 

processor when all subtasks have been generated using the Done-Task message. 

This is done by setting the Child-Task-Name argument of the message to nil and 

the Solution argument to "EOS". In the basic execution model, since all clauses 

that could be used to create a subtask were in a single responsible processor, the 

responsible processor knew locally when all possible subtasks had been created. The 

new mechanism is necessary to replace knowledge that no longer resides locally.9 

In addition, one needs to maintain a flag at the parent-task to indicate whether 

all possible subtasks have been found. This flag is false when a task is first created 

using cartesian product at a process. After a Do-Task message is sent out to the 

appropriate neighborhood and after the responsible processor has received an indi- 

cation from each processor that all subtasks have been generated, then the flag can 

be set to true. 

Note that it is not necessary that the partition be distributed over some neigh- 

borhood of a certain processor. The distribution may be over an arbitrary set of 

processors. This extra flexibility may be useful for some task allocation strategies. 

2.4.1.2    Long Streams 

Processes may have multiple input streams whose cartesian product has to be com- 

puted. To create this cartesian product, essentially the process has to store complete 

streams until the entire cartesian product has been obtained. Since it may be hard 

to accurately predict the lengths of these streams ahead of time, it is possible that 

9A more efficient solution to propagating Do-Task and Done-Task messages to/from the neigh- 
borhood is possible but the idea here is merely to show that a satisfactory solution to the problem 
exists. 
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Figure 18: Handling Long Streams 

the processor responsible for the process may not have the requisite storage. 

The solution is to sequentialize the dataflow* graph upstream from the process 

up to the Head process. As much sequentialization is done as is necessary to remove 

the memory problem. In the worst case, the sequentialization may lead to a linear 

sequence of processes requiring absolutely no cartesian products of streams. Of 

course, this means that no and-parallelism is exploited. Or-parallelism and pipelin- 

ing will continue to be exploited as before. Figure 18 shows an example of this 

process. In the example, the node corresponding to t3(X,Y,Z) is the one that gets 

into a memory constraint situation. 

Notice that the new dataflow* graph must exist independently along with the 

old dataflow* graph.    This is necessary because tasks/solutions may still be in 
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the pipeline in the original dataflow* graph when the new graph is introduced. 

Therefore, more than one Tail process may exist for a certain task. When solutions 

flow out of the Tail processes, an indeterminate merge of these streams must happen. 

Also, an EOS is sent from the collection of Tail processes only when they have all 
produced an EOS. 

2.4.2    Handling Non-Ground Bindings 

If a process produces non-ground bindings for the atomic proposition associated 

with it, then some downstream processes that work in parallel may not be able to 

do so any more. Processes should execute in parallel only if the bindings they are 

expected to produce are not for any common variables. A non-ground binding from 

a preceding process may remove this necessary condition. 

The solution is more or less complementary to the solution for the long stream 

problem. The dataflow* graph downstream from the process in question is sequen- 

tialized as much as necessary in order to avoid the problem. Figure 19 shows an 

example of this process. In the example, the node t3(X,Y,Z) is expected to produce 

a ground binding for the variable Z but does not. Similar to the long stream case, 

the multiple dataflow* graphs coexist independently. Multiple Tau processes are' 
handled as before. 

2.4.3    Handling Multiple Copies 

As of now, only one copy is allowed for each partition of the database. If there are 

goals generated in parallel that use the same partition, this restriction may lead to 

a bottleneck. A way out of this problem is to allow multiple copies of partitions. 

The solution is to decouple the functions of a normal process into two process types: 

CP and normal-new. The function of the CP process type is to compute cartesian 

products only. The normal-new process type does the rest of the computation that 

a normal process type did. Figure 20 shows graphically the interaction between 

the different process types. As indicated in the figure, two new message types are 
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Figure 19: Handling Non-Ground Bindings 
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Figure 20: Handling Multiple Copies 

required. These are: Distribute-Task and Collect-Task. The Distribute-Task 

message type is used to distribute computation to multiple copies of the partition 

and the Collect-Task message type is used to collect solutions from the multiple 

copies of the partition. 

The Arguments field of the Distribute-Task message type is of the form: 

<Destination-Process-Name, Task-Name, Task-Description> 

The Arguments field of the Collect-Task message type is of the form: 

<Destination-Process-Name, Spawned-Task-Name, Solution> 

Solution is the substitution that is being reported as a solution to the task whose 

name is Spawned-Task-Name. As before, end-of-stream is indicated by an "EOS" 

in the Solution field. 

Just as in the case of handling large databases, the multiple copies may be 

distributed to some neighborhood of a central processor or they may be in some 

arbitrary set of processors. 
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2.5    Discussion 

It was mentioned earlier that side-effects are not allowed in PM. This is not strictly 

true because benign side-effects that do not affect the result of a computation but 

only affect the efficiency can be allowed. A side-effect of this type is caching of 

results. In general, the lack of general side-effects is not as severe a problem as 

it might seem. Many search procedures [48] do not need any side-effects. Specific 

applications that do not need side-effects include diagnosis [28] and test-generation 

[59]—both for digital hardware. 

Also, it was mentioned that PM is designed only for non-shared memory ar- 

chitectures. However, it is not hard to modify PM to work on shared memory 

architectures as well. Going the reverse route (i.e., taking a shared memory al- 

gorithm and making it work on a non-shared memory architecture), is typically 

harder. 

The rest of this section compares PM to related parallel execution models. The 

related work that is discussed in this section is work by Conery [15], Singh and 

Genesereth [61], Lindstrom and Panangaden [41], Ciepielewski and Haridi [12], Bic 

[8], Clark and Gregory [14], Shapiro [57], Borgwardt [9], and Furukawa [25]. 

The research presented in this chapter builds on two important ideas. One is the 

exploitation of and-parallelism as described by Conery in his dissertation [15]. The 

other is the exploitation of or-parallelism and pipelining as described by Ciepielewski 

and Haridi [12], Lindstrom and Panangaden [41], and Singh and Genesereth [61]. 

The connections of PM with these two sets of ideas are described below. 

Conery's execution model exploited a restricted sort of and-parallelism. This 

restriction is exactly the one used in PM. A significant difference is that the back- 

tracking control of Conery is completely abandoned. Instead, PM uses a dataflow 

solution (with the exceptions described before). One consequence is that com- 

munication is reduced because all communication associated with backtracking is 

absent. A second consequence is that control is more decentralized. In general, 

Conery's and-processes correspond to the Head/Tail process pairs used in PM and 

Conery's or-processes correspond to the normal processes in PM. PM does not have 
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the Head/Tail process pairs coordinate the activities of the normal processes (in 

between) as Conery's model had the and-processes do for the children or-processes. 

A third consequence is that parallelism due to pipelining comes for free in PM. 

Conery's execution model, on the other hand, sends one solution at a time along 

"dataflow" arcs. Further solutions are sent on the prodding of another level of 

control analogous to backtracking in sequential Prolog. 

Haridi and Ciepielewski [12], Lindstrom and Panangaden [41], and Singh and 

Genesereth [61] showed how or-parallelism and pipelining could be exploited to- 

gether. In these pieces of research, conjunctive goals were solved from left to right 

in sequence. PM exploits and-parallelism also by using the idea of streaming for 

pipelining but allows the total order of conjuncts to be changed to a partial order. 

Or-parallelism is exploited as before. However, the cost of exploiting the additional 

parallelism is that a dataflow solution (modulo indeterminate merge) has a non- 

dataflow feature, cartesian product of streams, added to it. Although cartesian 

product does require state to be maintained, the good news is that it is only local 

state. No global state is maintained. 

Bic [8] describes another data-driven parallel execution model. However, this 

model only handles a restricted form of Horn clauses. Specifically, predicates must 

be binary, functions must be immediately evaluable during execution, and no struc- 

tured terms are allowed. 

Other parallel execution models have made use of programmer-supplied annota- 

tions to control the parallelism. Examples include Clark and Gregory's PARLOG 

[14], Shapiro's Concurrent Prolog [57], and Borgwardt's execution model [9]. PM 

differs from these execution models in that it does not use any annotations. An- 

other difference is that none of these three execution models exploits pipelining as 

exploited by PM. Moreover, Borgwardt's execution model is restricted to shared- 

memory architectures. However, these execution models have been characterized by 

the exploitation of another form of parallelism—stream parallelism. As defined by 

Conery [15], this type of parallelism involves the pipelining of structured data. For 

example, if two functions are to be applied, in sequence, to a list of data elements, 

the first function may be applied to the elements of the list one by one and these 
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partial results may be sent to the second function as they are generated. The second 

function may be applied to the result elements as they are generated by the first 

function. Typically, this form of parallelism is not important for knowledge-based 

applications. For example, the diagnosis [28] and test-generation [59] applications 

mentioned before do not contain any exploitable parallelism of this type. 

Matsumoto et al., in their backup parallelism mou.l [25], view each node of 

the and-or tree as a process. Each and (or) process activates descendant or (and) 

processes. A descendant process starts searching for another solution right after 

it sends a solution to the parent process. If an additional solution is found and 

it is not needed by the parent, the descendant process suspends. If the process is 

reactivated by the parent process in the future, it immediately returns a previously 

found solution or continues trying to find a solution. Therefore, one level of or- 

parallelism is maintained throughout the tree of processes. PM does not restrict 

the level of or-parallelism. 

After the work on PM was originally published [63,62], Li [40] came up with 

essentially the same idea independently for her doctoral dissertation. She calls her 

parallel execution model the Sync Model. 

The list of parallel execution models compared to PM in this section is by no 

means exhaustive. An attempt was made, however, to cover all major categories 

that are relevant. 

2.6    Conclusions 

This chapter has described PM, a parallel execution model for backward-chaining 

deductions. The most important contribution of this chapter is that PM can si- 

multaneously exploit or-parallelism, and-parallelism, and pipelining. This is more 

parallelism than is exploited by other execution models using dataflow principles, 

multiprocessors with no shared memory, and distributed databases. The extra 

parallelism can be an important advantage in a situation where large numbers of 

processors are available. Using dataflow principles means that synchronization over- 

head is minimized and the inherent parallelism can be fully exploited. 



Chapter 3 

Cost Function 

Optimal task allocation, even for relatively simple problems, is NP-complete [43]. 

The approach taken in this thesis is to define a cost function that quantifies in- 

tuitive notions of undesirable allocations and yet allows for efficient computation 

and recomputation. This chapter describes the cost function formally and presents 

algorithms for its computation and recomputation. The next chapter describes 

the allocation algorithms that use this cost function and results obtained from an 

implementation of the allocator. 

This chapter is organized as follows. Section 3.1 gives a formal definition of 

the cost function. The next two sections describe algorithms to compute this cost 

function. 

3.1     Definition of Cost Function 

3.1.1    Preliminary Definitions 

The logic program is described as a 3-tuple < F,R,G >, where F is the set of facts 

(i.e., Horn clauses with exactly one positive literal and no negative literals), R is 

the set of rules (i.e., Horn clauses with exactly one positive literal and one or more 

negative literals), and G is the set of goals (i.e., conjunctions of positive literals). 

65 
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Both facts and goals at compile-time may contain unknown constants. Unknown 

constants exist at compile-time only and represent constants at run-time. They are 

called unknown because their exact values at run-time are not known at compile- 

time. Since facts/goals with unknown constants may represent one of potentially 

many actual facts/goals with constants, facts/goals with unknown constants may 

be called fact patterns or goal patterns. For example, a fact pattern p(uc), where uc 

is an unknown constant, may represent either of facts p(cl) or p(c2), where cl and 

c2 are actual constants. 

Fact and goal patterns may be specified with an associated number. The number 

represents the expected number of instances of those fact and goal patterns at 

run-time. An instance of a fact/goal pattern is a fact/goal with specific values 

substituted for all unknown constants in the fact/goal pattern. 

L |s, where L is a literal and S is a substitution, denotes the literal obtained by 

applying the substitution S to the literal L. 

A cluster of processors is defined to be a set of processors that includes a central 

processor for the cluster and all processors within some specified distance away from 

the central processor. The size of the cluster can vary depending on the maximum 

distance allowed from the central processor and processors on the periphery of the 

cluster. Given the FAIM-1 topology as described in 1, these cluster sizes can be 

ZE(E — 1) -(-1 for positive integer E. The maximum number of processors in a cluster 

is restricted to be less than or equal to the maximum number of processors in the 

multiprocessor. 

3.1.2    Assumptions 

The algorithms to compute the cost function depend on the assumptions listed 

below: 

1. Unknown constants must represent atomic constants at run-time. They may 

not represent compound terms. 
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This assumption is chosen so that it will be possible to estimate the amount 

of data (in bytes, say) that will be used to represent these constants at run- 

time. If they represent arbitrary structures or functionals, then it may not be 

possible to estimate the amount of data without additional information from 

the user. 

One way to satisfy this assumption is to not allow any structures or function- 

als at all. However, one does not have to be this strict because all that is 

required is that unknown constants not be bound to structures or functionals. 

Chapter 4 (on Allocation Algorithms) contains an example that has to do 

with reasoning about a digital hardware device. In that example, functionals 

are present, yet unknown constants are always bound to atomic constants. 

2. There are no recursive clauses in F U R. 

With arbitrary recursive clauses, it is not possible to estimate the amount 

of communication or computation because the problem is equivalent to the 

halting problem. (It will be seen in section 3.1.3 that estimating the amount 

of communication and computation is necessary to compute the cost func- 

tion.) However, in certain recursive cases, it may be possible to estimate the 

amount of communication and computation automatically. For example, if 

the length of a list argument gets reduced by one for every recursive call, then 

the recursion depth can be estimated to be the length of the list and it should 

be possible to estimate communication and computation. In addition, there 

may be other cases where some pragmas (or hints) from the user may allow 

a program to complete the rest of the analysis. For example, in a quick sort 

program, the length of the list gets reduced to half for every recursive call. 

Therefore, the recursion depth is log2n, where n is the length of the list. 

3. Each fact in F is ground (i.e., no variables are allowed in any fact). Rules may 

contain variables, however. 

Again, this assumption is designed so that proper estimates may be made of 

the amount of communication and computation. In particular, this assump- 

tion makes it possible to know which DAG will be used for a particular set of 
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conjuncts in a conjunctive goal. Remember that section 2.4.2 had described 

how to handle non-ground bindings. This complication can be ignored when 

this assumption is made. 

4. Equal frequency assumption: An unknown constant is equally likely to repre- 

sent any known constant in the associated domain. 

For lack of any more information, this assumption seems as good as any. The 

question arises, however, of what to do if more precise information is given 

about the probability distribution of the unknown constant values. This the- 

sis does not make a contribution here. It should be noted though that this 

assumption will be used later to compute the probability of two literals unify- 

ing. That computation is completely independent of other parts of this thesis. 

Therefore, if techniques are found for taking other probability distributions 

into consideration, then they can be used immediately with no change to the 

rest of the thesis. 

5. Variable independence assumption: During unification of two literals, we as- 

sume that each distinct variable varies independently over its domain. 

Again, this assumption is made to allow computation of the probability of 

unification of two literals. And again, this issue is orthogonal to the rest of 

the thesis. Therefore, other techniques for estimating probability may be used 

freely. 

6. Literal independence assumption: Solutions of individual conjuncts in a con- 

junctive goal are independent of each other. 

The same comments that applied to the two previous assumptions apply here 

as well. 

7. Multiple copy clustering assumption: Although multiple copies of a single 

partition may be distributed over the set of processors in an arbitrary way, we 

consider the restricted case in which all processors in a cluster of processors 

contain a copy of the partition (and no other processors contain a copy). 
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This assumption is probably not going to be the best distribution of multiple 

copies for all applications. However, for the applications considered in this 

thesis, this assumption is reasonable. It will be argued in chapter 4 while 

discussing experimental results that this assumption is reasonable for a fairly 

wide class of applications—the class of applications in which there is a high 

degree of locality of computation. Reasoning about digital hardware seems 

to exhibit this locality. Reasoning about other physical artifacts may exhibit 

this locality as well. 

The alternative of allowing arbitrary locations of copies may not be unfeasible 

but leads to more expensive cost computation/recomputation and allocation 

search algorithms. Therefore, if it is not necessary, as in the applications 

considered in this thesis, then it is best to use the "clustered copies" approach. 

8. Multiple copy uniformity assumption: Again, in the general case, multiple 

goals associated with the same partition may be distributed in an arbitrary 

way over multiple copies of the partition. We consider the restricted case in 

which goals are uniformly distributed over the multiple copies. In particular, 

the uniform distribution is done by assigning any new goal to a random copy 

of the associated partition. 

The same comment that applied to the previous assumption applies here as 

well. 

3.1.3    Cost Function 

C, the cost function, takes an allocation as defined in chapter 1 and returns a non- 

negative real. Actually, since multiple copies are restricted to clusters as described 

above, an allocation can now be restated to be a many-to-one (instead of many-to- 

many) mapping of partitions to processors. The processor mapping of a partition is 

taken by convention to be the central processor in the associated cluster of copies. 

I will now give some motivation for the cost function before defining it formally. 

Every parallel computation has an associated parallelism profile, where parallelism 
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Busy 
Procesors 

Time 

Parallelism Profile 

Figure 21: Parallelism Profile of a Computation 

profile is defined to be the function the gives the number of busy processors versus 

time assuming unbounded processors and memory, and instantaneous communica- 

tion. Let us say that the profile is as given in figure 21. Now, a lower bound on the 

completion time for the computation for any practical multiprocessor is given by 

L (because any practical multiprocessor will have a bounded number of processors 

and non-zero communication delays). If A is an allocation, a cost function C can 

be defined as follows: 

C'{A) = L + CC(A) + PMC(A) 

where CC(A) (or the communication cost of the allocation) is the additional delay 

expected due to non-zero communication delays in a practical multiprocessor and 

PMC(A) (or processor multiplexing cost of the allocation) is the additional delay 

expected due to sequentialization of parallel computations. Notice that L is inde- 

pendent of any allocation. Therefore, if the only purpose of using the cost function 

is to compare multiple allocations, a new cost function C can be defined as follows: 

C(A) = CC(A) + PMC(A) 
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In general, there is a trade-off between CG and PMC. Allocating all compu- 

tation to a single processor makes CG zero. However, PMC is the highest for 

this situation since all parallel computation needs to be sequentialized. On the 

other hand, if the computation is spread out among as many processors as possible 

(assuming for now that there is no shortage of processors), then PMC is lowest. 

However, CG is the highest for this situation. Finding a good allocation depends 

on finding a good tradeoff between GC and PMC. 

Notice that no parallelism is exploited within any given partition. Therefore if 

the dataflow* graph is as given in figure 22, where the dashed lines enclose compu- 

tation within partitions, then only communication and parallelism across partition 

boundaries make contributions to CC and PMC respectively. 

3.1.4     Communication Cost Function 

CC, the communication cost function, is defined to be the sum of delays of all the 

messages that need to be sent. This is an upper bound on the extra delay that 

should be expected due to non-zero communication delay. The upper bound will 

be reached if all the communication is on the critical path. A closer upper bound 

might take parallelism of communication into account and this is explored a bit 

in chapter 4. It turns out that the current definition of the communication cost 

function works quite well (as will be seen in chapter 4). 

Let delay(dt,ds) be the time taken for a message with data size dt to travel 

from a source to a destination separated by distance ds. The units for dt and ds 

could be bytes and hops respectively, for example. In the FAIM-1 multiprocessor, 

extensive simulation has shown [67] that the delay function is expected to be of the 

form given below. 

delay(dt, i.) = { *' + * X * + *' * *   K * > ° (1) 
[ 0 otherwise 

where K\,Ki, and A3 are constants. Note that ds = 0 means that the source 

and destination processors are the same. 



72 CHAPTER 3.   COST FUNCTION 

Parallelism 
Communication 

Figure 22: Partitioned Dataflow* Graph 
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Formally, we can say 

CC(A)=     Y,    delay{data{Mi),distance(Mi)) (2) 
VAi>€5Af 

where SM is the set of messages that need to be sent, and data and distance 

are functions that give the data size and distance (between source and destination 

processors) of a message. 

As will be seen later in the description of the algorithm to compute communi- 

cation cost, it is useful to reformulate equation 2 using equation 1 as shown below. 

CC{A) = Y,HSD^ (3) 

where SDij is the sum of delays for all messages that need to be sent from partition 

i to partition j. Now, if these partitions are mapped to the same processor, we have 

SDij = 0 (4) 

Let us consider the other case in which the two partitions are not mapped to the 

same processor. Further, let the distance between the two processors be dist(i,j). 

Now, 

SDij=       5Z       delay(data(Mi)idist(ijj)) 
VM,eSMPi,j 

where SMPij is the set of messages that need to be sent from partition i to partition 

j. Substituting from equation 1, we get 

SDij =       Yl      (Ki + K2x dataiMi) + K3 x dist(i,j)) 
VM,eSMPi,j 

Now, let the number of messages sent from partition i to partition j be num(i,j) 

and the total amount of data in all these messages be data(i,j). Substituting this 

into the above equation gives 

SDij = Kx x num(i,j) + K2 x data(i,j) + K3 x num(i,j) x disi(i,j) 

In summary, we have the following equations for communication cost: 
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CC(A) = J2Y/SDi,j (5) 

SDtj = (6) 

Kx x num(i,j) + K2 x data(i,j) + K3 x rcum(i, j) x dist(i,j)   if dist(i,j) > 0 

0 otherwise 

Therefore, to compute the communication cost function, it is sufficient to know 

the total number of messages and the total amount of data to be sent between each 

ordered pair of partitions. Notice on the right hand side of equation 6 that only 

dist(i,j) is dependent on the particular allocation being considered. Therefore, if 

a different allocation is considered, very little recomputation needs to be done to 

compute SDij and in turn CC. 

In case multiple copies of partitions are allowed, there will be some additional 

communication between the CP processes and the associated normal-new processes 

(see section 2.4.3). Also, if the communication is non-zero, the communication cost 

given above in equations 5 and 6 varies linearly with the distance. Therefore, the 

additional communication cost can be accounted for very easily by associating it 

with a distance that is the expected distance from the central processor of the par- 

tition to all other processors that contain copies of the partition. This is reasonable 

because the multiple copy uniformity assumption dictates that multiple copies of 

partitions are used equally (in a probabilistic sense). 

3.1.5     Processor Multiplexing Cost Function 

Informally, the processor multiplexing cost function PMC ignores all communication 

cost (i.e., assumes instantaneous communication) and increments cost for every 

instance in which two tasks could be done in parallel but are assigned to the same 

processor. 
PMC is defined with respect to a hypothetical world and not the real world. 

This hypothetical world can be defined in terms of differences from the real world. 

There are two differences: 
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1. Zero communication delays 

Messages get transmitted instantaneously in the hypothetical world. 

2. Infinite pool of virtual processors for each actual processor 

When an actual processor receives a message, it immediately assigns (with 

no overhead) a free virtual processor from its pool to process the message. 

However, the processing of each message by a virtual processor is done in the 

normal sequential manner. 

Given this hypothetical world, it is clearly possible to have more than one task 

being executed at a particular actual processor at any time. Let us define the 

processor-load pUj(t) of an actual processor Pj at time t for top-level goal Gi to be 

the number of tasks generated from Gi being executed at Pj at time t. A particular 

plij(t) may look like the curve in figure 23. Also, excess-processor-load is defined to 

be the excess over 1 of the processor load. In other words, 

epkj(t)=max(0,plij(t)-l) 

In figure 23, epl{j(t) is the value of ph,j(t) over the y = 1 dashed line. Since there 

is only one unit of processing power available at each processor, eplij(t) represents 

computation that must be sequentialized. An upper bound on the additional time 

taken due to this sequentialization is represented by the shaded area above the y = 1 

line. The upper bound is reached if all the computation that must be sequentialized 

is on the critical path of the computation. The sum of these shaded areas for all 

processors weighted by the top-level goals is defined to be the processor multiplexing 

cost. To be more precise, 

PMC(A) =    ]T   numgoal(Gi) x £ /    eplitj{t)dt (7) 
VG.65G .7=1 ^ 

where SG is the set of top-level goals, numgoal(Gi) is the number associated with 

top-level goal Gi, there are q processors named Px... Pq, and epk^{t) is the excess- 

processor-load of actual processor Pj considering only top level goal (?;. 
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Time 

Figure 23: Processor Load Function 

One way to compute the processor multiplexing cost is to first compute what 

is necessary for any allocation. Then, additional computation can be done to take 

a specific allocation into account. In particular, processor-load can be computed 

for each partition assuming it is allocated to a processor separate from any other 

partition. The following allocation-specific computation must be done for each top- 

level goal and processor. Processor-loads of all partitions that are allocated to a 

particular processor Pj for a particular top-level goal G{ must be combined to get 

pkj(t). The "shaded-area" computation can now be done for each processor and 

top level goal combination and then these can be summed up according to equation 

7. 

In case there are multiple copies, the processor-load associated with any partic- 

ular partition is assumed to be equally distributed over the multiple copies of the 

partition in question. 

3.2     Strategy for Computing Cost Function 

To compute the cost function exactly requires doing the run-time computation at 

compile-time. Since this is clearly senseless, we restrict compile-time computation 

to reasoning about an abstraction of the run-time computation, an abstraction in 
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which specific constants of the facts in the database are ignored. The hope, of 

course, is that the approximation to the run-time computation is close enough to 

get meaningful numbers from the analysis. In addition, it is hoped that much less 

computation needs to be done to reason with the abstraction instead of the real 

run-time computation. 

Figure 24 illustrates how fact patterns with unknown constants replace facts with 

actual constants in the database. Symbols beginning with "uc" represent unknown 

constants. The crossed out facts are the ones in the original database. Figure 25 

illustrates that using fact patterns reduces the number of logical inferences. Logical 

inferences enclosed in thick ovals may be collapsed into one logical inference at 

compile-time. In the best case, the number of logical inferences may be reduced by 

an exponential factor. Figure 26 shows a conjunctive goal with 3 conjuncts. If there 

are n facts with the a predicate, n2 facts with the b predicate, and ra3 facts with 

the c predicate, then the number of logical inferences at run-time is (n + n2 + n3) 

or 0(n3). In general, for m conjuncts, the number of logical inferences would be 

0(nm). However, if the facts of each predicate get represented by a single compile- 

time fact, then the number of logical inferences at compile-time is only 3. In general, 

for m conjuncts, the number of compile-time inferences is only 0(m). Therefore, 

the number of logical inferences is reduced by an exponential factor from 0(nm) to 

0(m). 

One effect of using unknown constants is that unification is now a probabilistic 

process. It does not just succeed or fail; it succeeds with some probability. This 

will be discussed in more detail in section 3.3. 

Another computation-saving technique used in the cost computation procedures 

is to separate out the allocation-independent computation from the allocation- 

dependent computation. The allocation-independent computation needs to be per- 

formed only once for the application. Only the allocation-dependent computation 

needs to be performed when a specific allocation is being considered. In addition, 

when an allocation is changed slightly, even the allocation-specific computation need 

not be performed from scratch. Useful state can be saved between recomputations 

and this can lead to significant savings. 



78 CHAPTER 3.   COST FUNCTION 

r(X,Y):- p(X),q(Y),s(X,Y). 

2 p(uc) 

q(Y) :- m(X),n(X,Y). 

2 m(uc). 

>¥ Ä 

2 n(ud,uc2). 

2 s(uc1,uc2) 

Figure 24: Compile-time Database 



3.2.   STRATEGY FOR COMPUTING COST FUNCTION 79 

Figure 25: Compile-time Computation 
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a(X) b(X,Y) c(X,2) 

Figure 26: Exponential Savings at Compile-time 

In the case of communication cost computation, the number of messages and 

the amount of data between each pair of partitions is independent of the alloca- 

tion. Only, the distance between partitions is dependent on the allocation being 

considered. 

In the case of processor multiplexing cost computation, the processor-load func- 

tions associated with each partition (assuming that they are allocated to separate 

processors) are independent of the allocation. Combining processor-loads of differ- 

ent partitions does depend on the allocation. However, useful state can be kept 

between recomputations to save on computational effort (as will be seen later in 

section 3.4). 

An alternative to this approach of estimating the amounts of communication 

and processor-loads at compile-time is to gather information from one or more runs 

of the application and collect this information for use by the cost computation pro- 

cedures. One can also think of hybrid approaches in which compile-time estimates 

may be modified (if necessary) by data collected at run-time. The advantage with 

using run-time data is that one does not depend on assumptions that may not be 

totally accurate (required to do compile-time estimation and listed in section 3.1.2). 

However, the disadvantage is that the estimates may get unduly influenced by the 

last run or last several runs. Also, making several runs of the application can be 

much more expensive (depending on the number of runs) than making one run using 

unknown constants. 
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3.3    Communication Cost Computation 

The algorithms described in this section axe for computing the communication cost 

for a single top-level goal. If there are multiple top-level goals, then the algorithms 

need to be repeated for each top-level goal and the costs summed. Also, if a certain 

top-level goal is repeated multiple times, the communication cost is computed for a 

single instance and the communication cost for the multiple instances is computed 

by multiplying the single instance cost by the repetition factor. 

The computation of communication cost is done by two algorithms. The first 

algorithm is called the Communication Estimation algorithm. This algorithm per- 

forms an abstract simulation of PM. A side-effect of the simulation is the estimation 

of the amount of communication (in total bytes and number of messages) between 

every pair of partitions. The second algorithm is called the Communication Cost 

Computation algorithm. This algorithm takes the output of the Communication 

Estimation algorithm and an allocation and computes the communication cost. 

The Communication Estimation algorithm is based on the idea of simulating 

(at compile-time) a backward-chaining deduction using PM as the execution model. 

The difference from the actual run-time computation is that the compile-time simu- 

lation is less detailed and, therefore, takes less time than the run-time computation. 

Probabilistic analysis replaces some of the detailed computation and most of the 

description of the algorithm focuses on this analysis. 

The organization of this section is as follows. Subsection 3.3.1 gives the spec- 

ifications of the communication estimation algorithm. The next three subsections 

lay down the basis of the probabilistic analysis. Subsection 3.3.2 describes how 

goals may be viewed as probabilistic filters over their solution domains. Subsection 

3.3.3 describes how the probability of unification of two literals may be estimated 

when the exact constants in the literals are not known at compile-time. Subsection 

3.3.4 describes how run-time messages must be augmented to make them suitable 

for the probabilistic analysis. The next two subsections describe two variants of 

the Communication Estimation algorithm. Subsection 3.3.5 describes the simpler 

variant that does not deal with duplicate solutions while the next two subsections 
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show how duplicate solutions can be handled. 

The Communication Cost Computation algorithm is trivial compared to the 

Communication Estimation algorithm. After the Communication Estimation algo- 

rithm has produced an estimate of the amount of communication between every 

ordered pair of partitions, the communication cost algorithm simply uses this in- 

formation and equations 5 and 6 to compute the communication cost. Since the 

algorithm is so simple, it will not be described in any more detail. 

Finally, subsection 3.3.8 discusses the complexity of both the Communication 

Estimation algorithms and the Communication Cost Computation algorithm. 

3.3.1    Specification of Communication Estimation Algorithm 

Inputs 

1. F: a set of fact patterns. 

2. R: a set of rules. 

3. G: a set of goal patterns. 

4. P: a set of subsets of Rl) F that are mutually exclusive and exhaustive. Each 

member of P is called a partition. Remember that a constraint of PM is 

that all clauses that may be applied to reducing any particular literal subgoal 

generated during the backward-chaining deduction should be included in pre- 

cisely one partition. Note that we are talking about a single logical inference 

here, not a goal reduction involving an arbitrary number of logical inferences. 

As an example, there could be one member of P for each set of facts and rules 

with a different predicate. 

5. domsize: a two argument function that takes a predicate name and a number 

specifying a field and returns the associated domain size. For example, if 

parent(X,Y) indicates that X is a parent of Y, then domsize(parent, 1) = 2 

since every person has two parents. Also, if the average number of children in 

a family is 3, we might say that domsize(parent,2) = 3. 
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3.3    Communication Cost Computation 

The algorithms described in this section are for computing the communication cost 

for a single top-level goal. If there are multiple top-level goals, then the algorithms 

need to be repeated for each top-level goal and the costs summed. Also, if a certain 

top-level goal is repeated multiple times, the communication cost is computed for a 

single instance and the communication cost for the multiple instances is computed 

by multiplying the single instance cost by the repetition factor. 

The computation of communication cost is done by two algorithms. The first 

algorithm is called the Communication Estimation algorithm. This algorithm per- 

forms an abstract simulation of PM. A side-effect of the simulation is the estimation 

of the amount of communication (in total bytes and number of messages) between 

every pair of partitions. The second algorithm is called the Communication Cost 

Computation algorithm. This algorithm takes the output of the Communication 

Estimation algorithm and an allocation and computes the communication cost. 

The Communication Estimation algorithm is based on the idea of simulating 

(at compile-time) a backward-chaining deduction using PM as the execution model. 

The difference from the actual run-time computation is that the compile-time simu- 

lation is less detailed and, therefore, takes less time than the run-time computation. 

Probabilistic analysis replaces some of the detailed computation and most of the 

description of the algorithm focuses on this analysis. 

The organization of this section is as follows. Subsection 3.3.1 gives the spec- 

ifications of the communication estimation algorithm. The next three subsections 

lay down the basis of the probabilistic analysis. Subsection 3.3.2 describes how 

goals may be viewed as probabilistic filters over their solution domains. Subsection 

3.3.3 describes how the probability of unification of two literals may be estimated 

when the exact constants in the literals are not known at compile-time. Subsection 

3.3.4 describes how run-time messages must be augmented to make them suitable 

for the probabilistic analysis. The next two subsections describe two variants of 

the Communication Estimation algorithm. Subsection 3.3.5 describes the simpler 

variant that does not deal with duplicate solutions while the next two subsections 
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Output 

• C: a function that takes two partitions Pi and P2 and returns a tuple of 

the form < data, number > where data is the amount of data (in bytes) and 

number is the number of messages sent from partition Pi to partition P2. data 

and number are expected values in a probabilistic sense. 

3.3.2    Goals as Filters 

Each goal, be it a literal or a conjunction of literals, can be characterized as a filter 

over its solution domain. Filter probability is defined to be the probability that a 

random member of the set of possible solutions is a member of the set of actual 

solutions. 

The cardinality of the domain of possible solutions (of a literal goal or a con- 

junctive goal), Np, is given by the following equation: 

NP = n d&) (8) 
vieV 

where V is the set of variables in the goal and d(X) is the size of the domain of 

variable X. This formula assumes that if the same variable occurs more than once 

in a single conjunct or in more than one conjunct in a conjunctive goal, then its 

domain is the same for each occurrence. 

If the number of actual solutions is JVa, then the filter probability, PP, is given 

by 

FP = T, P») 
By using the literal independence assumption, it follows directly that the filter of 

a conjunctive goal is equal to the product of the filters of the individual conjuncts. 

In other words, the expected number of solutions N to a conjunctive goal 

C = {Ci, C2,..., Cn} 

is given by 
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N = Npxf[FP(Ci) (10) 

where Np is the number of possible solutions and FP(d) is the filter probability of 

conjunct C{. Plugging in the value of Np from equation 8, we get 

N=J[d(vi)xf[FF(Ci) (11) 

where V and d are as defined before.   This is an important equation because it 

makes the Communication Estimation algorithm particularly simple as will be seen 

later. 
As an example of the application of this equation, see figure 27.  A 3-conjunct 

goal has to be solved with the database and domain sizes as given. In this example, 

Np = d(X) x d(Y) x d(Z) = 12 x 4 x 2 = 96 

Also, the filter probabilities of the three conjuncts can be computed as foUows. The 

filter probability of "a(X)" is its actual number of solutions (= 6) divided by its 

potential number of solutions (= d(X) = 12), which is 0.5. The filter probability of 

«b(X,Y)" is its actual number of solutions (= 24) divided by it potential number 

of solutions (= d(X) x d(Y) = 12 x 4 = 48), which is 0.5. The filter probability of 

«c(X,Z)" is its actual number of solutions (= 8) divided by its potential number of 

solutions (= d(X) x d(Z) = 12 x 2 = 24), which is 0.33. Therefore, using equation 

11, we get 

N = n <wx n Fpw 

= 96xf[FP(Ci) 
t=i 

96 x 0.5 x 0.5 x 0.33 = 8 

Now, we carry this analysis a step further. Each conjunct in a conjunctive 

goal may actually be reduced by more than one rule or by more than one fact. 

Therefore, more than one path of reasoning may lead to actual solutions for the 

conjunct. Each such path of reasoning, or a set of such paths of reasoning considered 
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AN»??? 

Database Domain sizes 

6 a(ucl). d(X) = 12 

24 b(uc2,uc3). d(Y) = 4 

8 c(uc4,uc5). d(Z) = 2 

Figure 27: Predicting Communication 
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together, may lead to a particular set of actual solutions. This particular set of 

actual solutions will be a subset of the complete set of actual solutions but can 

be characterized as a filter nonetheless. Of course, the filter probability associated 

with a conjunct, considering only a subset of the paths of reasoning, will be less 

than or equal to the filter probability associated with the conjunct when all the 

paths of reasoning are considered. Due to the literal independence assumption, this 

filter probability associated with a conjunctive goal will be a product of the filter 

probabilities associated with the individual conjuncts for the same subset of the 

actual solutions. 

3.3.3    Probability of Unification 

This section describes how one can compute the probability of unification of two 

literals. Each literal can contain unknown constants. During unification, variables, 

constants and unknown constants may be unified against each other. A valid unify- 

ing substitution may contain bindings of: (1) variables to either variables, unknown 

constants, or constants, and/or (2) unknown constants to either unknown constants 

or constants. Of course, constants to be unified must match exactly. 

Table 1 gives the probabilities of these unifications. In the table, d(uci), where 

uci is an unknown constant, refers to the domain size (given by the function 

domsize) of the field of the relation that uci is associated with. The probabil- 

ity of unification of the two literals is simply the product of the probabilities of 

unifications of the type given in the table. Taking a product is justified by the 

argument independence assumption. Similar probabilistic analysis has been used 

before by Treitel in his work on selecting the optimal mix of forward and backward 

inference for a sequential processor [69]. 

As an example, consider the unification of the two literals a(ucl,uc2,uc3) and 

a(X,X,cl). In this case, uci and uc2 must be unifiable and the probability of this 

can be found from table 1 to be ^ = ^ Notice that the domain sizes of the 

two unknown constants have been assumed to be equal. Also, ucZ must be unifiable 

with cl and the probability of this can be found from the table to be 1^. The 
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V1 

d 

uc1 

V2 c2 uc2 

1 1 1 

1 

1 (if c1=c2) 

0(ifd*c2) 

1 

d(uc2) 

1 
1 

d(üci) 

1 

d(üci) 
1 

= d(üc2) 

Table 1: Probabilities of Unification 

probability of unification of the two literals is the product of these two probabilities. 

As another example, consider figure 27 again. Remember that back in chapter 

2, we had proved a theorem that stated that the set of solutions produced by PM 

is equal to the set of solutions produced by a Prolog interpreter. Of course, this 

theorem also implies that the cardinalities of the sets of solutions must be equal 

in the two cases. In section 3.3.2, we saw that applying equation 11 had given the 

number of solutions of the conjunctive goal in figure 27 to be 8. Now, we can get the 

number of solutions by using a total order of conjuncts as in a Prolog interpreter 

and using table 1 directly and show that we get the same number of solutions. In 

particular, a Prolog interpreter might use a total order like the one shown in figure 

28. The number of-solutions of the first conjunct will be 6 because there are 6 

"a" facts in the database and the variable X in the goal unifies with probability 

1 with ucl in the facts. Next, the variable X in the second conjunct gets bound 

to an unknown constant. The probability of unification of the "b" conjunct with 

the "b" facts in the database is the inverse of the domain size of the first field of 

the "b" relation (= d(X) = 12 in figure 28) since an unknown constant is getting 
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fi 12 
a(X)  ►    b(X,Y) 

Database 

6 a(ucl). 

24 b(uc2,uc3). 

8 c(uc4,uc5). 

24 

8 

Domain sizes 
d(X) = 12 

d(Y) = 4 

d(Z) = 2 

Figure 28: Estimating Number of Solutions for Prolog 

unified with another unknown constant. Since there are 6 "b" goals, 24 "b" facts 

in the database, and the probability of unification is i, the expected number of 

solutions of the first two conjuncts is 6 x 24 x £ = 12. Next, variable X in the 

"c" conjunct gets bound to an unknown constant. The probability of unification of 

the "c" goals with the "c" facts is the inverse of the domain size of the first field 

of the V relation (= d(X) = 12) since an unknown constant must be unified with 

another unknown constant. Since there are 12 V goals, 8 V facts in the database, 

and the probability of unification is i, the expected number of solutions of all three 

conjuncts together is 12 x 8 x £ = 8. This is the same as the number obtained by 

applying equation 11. This technique of finding the expected number of solutions 

of a set of conjuncts by mapping it back repeatedly to the Prolog case can lead to 

very inelegant and inefficient algorithms. Using equation 11 directly turns out to 

be much simpler (as will be seen later in section 3.3.5). 
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3.3.4    Compile-time Messages 

As mentioned before, the communication estimation algorithm is based on the idea 

of simulating (at compile-time) a backward-chaining deduction using PM as the ex- 

ecution model. The difference from run-time deduction is that unknown constants 

may be used at compile-time. For now, assume that a message in PM contains 

substitutions only. The initial behavioral description of PM made the same simpli- 

fication. However, at compile-time, a message contains some additional information. 

First, a substitution with unknown constants represents an equivalent class of 

actual substitutions with actual constants only. Each member of the equivalent 

class is obtained by giving each unknown constant a value in its domain. A compile- 

time message is associated with a number called the number of substitutions. This 

number represents how many instances of the compile-time message's equivalent 

class are expected (in the probabilistic sense) to be sent on the associated channel at 

run-time. Note that at run-time each message is treated completely independently. 

For example, when a new conjunct graph is created to solve a subgoal at run-time, 

a single message is sent to the head process of the new conjunct graph along its 

task channel. At compile-time, if the same message has an associated number of 

substitutions of N, then N separate conjunct graphs would actually be generated 

at run-time, each with its own message on the task channel to the head process. 

The advantage of using the unknown constant abstraction is that it allows the 

algorithm to estimate communication cost without doing the entire deduction itself. 

Also, if the goal for the entire deduction is specified using unknown constants, the 

expected communication costs for the entire class of goals represented is computed 

in one pass. In contrast, the run-time execution model can only handle one specific 

goal at a time. 

Second, a compile-time message is associated with a filter set. A filter set is a set 

of 2-tuples. There is one such 2-tuple for each literal that has been processed so far 

in the conjunct graph. Each tuple contains: (1) a number indicating the position 

(leftmost being 1) of the literal in the antecedents of the rule that generated the 

associated conjunct graph and (2) the filter probability for that literal that led to 

the set of substitutions described by the compile-time message. 
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In addition, each message on each channel in a conjunct graph contains the initial 

number of substitutions for the conjunct graph. The initial number of substitutions 

is the number of substitutions sent on the task channel of the head process to 

the complete conjunct graph. A complete conjunct graph is defined to mean a two- 

terminal DAG of processes that includes a matching pair of Head and Tail processes 

and all the normal processes in between. 

Considering everything, a compile-time message is a 4-tuple: 

<N,S,NI,FS> 

where N is the number of substitutions, S is the substitution, NI is the initial 

number of substitutions and FS is the filter set. 

Each compile-time message is associated with a particular channel in the dataflow* 

graph during simulated deduction.   The source node and the destination node of 

the channel are associated with one database partition each.   The compile-time 

message contributes to the amount of communication between this pair of database 

partitions. The amount of data is 

data(S) x N 

where data(S) is the amount of data (in bytes, say) that will be contained in the 

substitution at run-time that 5 represents. (5 itself may contain unknown con- 

stants each of which represents a known atomic constant at run-time.) The number 

of messages to be sent is JV, the number of substitutions. The total amount of 

communication between a pair of partitions is the sum of contributions from each 

message. 

Section 3.3.5 describes the algorithm to compute the amount of communication 

between each pair of partitions for a single goal. If multiple goals are given, the 

algorithm must be repeated for each goal and the amounts of communication added 

up. This algorithm follows quite naturally from the ideas in sections 3.3.2, 3.3.3, 

and 3.3.4. It may be skipped without loss of continuity in the thesis. The interested 

reader can return to this section later for more detail. 

*A message at run-time is a substitution at this level of detail. 
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3.3.5    Communication Estimation Algorithm (No Duplicates) 

This section presents the behavioral description of the simulated parallel execution 

model. The description is similar in nature to the behavioral description of PM 

contained in section 2.3.2. The only difference is that the behavioral description 

of PM dealt with actual messages whereas simulated PM deals with compile-time 

messages. As explained before, the set of compile-time messages that is generated 

during simulated deduction contains sufficient information to compute the amount 

of expected communication between each pair of partitions. 

The description is divided into four parts as before: (1) Sim-CP—the analog 

of the CP function of PM, (2) the response of a normal process to each compile- 

time message on its virtual input channel, (3) the response of a tail process to each 

compile-time message on its virtual input channel, and (4) the response of a normal 

process to each compile-time message on each of its subsolution channels. 

A running example to make the explanations clearer is shown in figure 29. This is 

the same example as the one that was considered in chapter 2 except that unknown 

constants have been used for the facts. Also, the NF numbers to the right of the 

facts indicate how many facts of that pattern are present in the database. The 

dataflow* graph for the simulated deduction is shown in figure 30. Each compile- 

time message on each channel is shown in the figure. Only one compile-time message 

is sent on each channel for this example. This is not true for all cases. We will 

assume for this example that the cardinality of the domain of each variable and 

unknown constant is 2. 

3.3.5.1    Analog of the CP function 

As described in chapter 2, the function CP takes n sets of substitutions—a set for 

each input channel of a normal process—and returns a single set of substitutions. 

The output set of substitutions is the one carried on the hypothetical virtual input 

channel of the normal process in question. CP considers the cartesian product of 

the input sets and rejects all inconsistent composite substitutions using an auxiliary 

function called Merge. 
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r(X,Y):-p(X),q(Y),s(X,Y) 

p(ud) NF=2 
q(Y):- m(X), n(X.Y) 
m(uc2) NF=2 
n(uc3,uc4) NF=2 
s(uc5,uc6) NF=2 

r(X,Y) is the top level goal 

Figure 29: Example Database 

Sim-CP, the simulated deduction version of CP, considers the cartesian product 

of sets of compile-time messages and rejects composite messages that contain incon- 

sistent substitutions. The point of departure from CP is Sim-Merge, the simulated 

deduction version of Merge. Sim-Merge must determine consistency of substitu- 

tions as before. However, in addition to that, it must compute the other fields of a 

compile-time message. In particular, these fields are number of substitutions, initial 

number of substitutions and filter set. 

Let there be n input channels for the normal process in question. Sim-Merge 

takes one compile-time message from each channel and either returns a compile- 

time message or 1-a special element. The special element is used to indicate 

inconsistent input substitutions just as Merge did.  Let the compile-time message 

on the ith channel be 

<Ni,Si,NI,FSi> 

In case the input compile-time messages contain inconsistent substitutions, then 

the output of Sim-Merge is J_. Substitutions are inconsistent if the same variable 

is bound to different known constants. Variables bound to different unknown con- 

stants are not inconsistent. 

If the output is not J., it is a compile-time message 

<N0,S0,NI,FSo> 
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<1.{}.1.{}> 

11 <1.{}.1.0>1   T <2,{X=uc1,XUuc2,Y-uc4},1,{<1,0.5>}> 

H/T 

r(X,Y) 

!1.0.1.0> 

<1.{}.1.{}> 
<1.0.1,{}= 

<2,{},2,{}> 

PWY^ 

<2,{X-uc1 ,X1 =uc2,Y«uc4},1 ,{<1,0.5>}> 

<2,{X«uc1,X1=uc2,Y=uc4},1,{<1,1>,<2,1>,<3,0.5>}> 

H/T 
g2.(X=uc1.X1=uc2.Y=uc4),1.(<1.1>.<2 1>,<3,0.5>)> 

<2,(X-uc1),1,{<1,1>}> 

q(Y) 

<2,{X-uc1},2,{}> 

H/T 

=1.{}.1,{}>rl 

L, 
<2,{XUuc2,Y-uc4}, 

1,{<2,1>}> 

S(X,Y) 

<2.{},2.{}> <2.{}.2,{}> 

H/T 

sm-<4,{X«uc1 ,X1 =uc3,Y-uc4},1 ,{<1,1 >,<2,1 >}> 

i2,{X1 -uc2,Y-uc4},1 ,{<1.1 >,<2,0.5>}> 

H/T 

<1.0.1.{}> <2,{X1-uc2,Y-uc4},1.{<1.1>,<2,0.5>}> 

^(xT^ <2,{X1-uc2},1,{<1,1>}3 
n(X1,Y)r—I 

<2.{}.2,{}> <2,{X1-uc2},2,{}> <2,{},2,{}> 

H/T 

<2,{Y=.uc4},2,{}> 

H/T 

Figure 30: Dataflow* Graph for Simulated Deduction 



94 CHAPTER 3.   COST FUNCTION 

Since a filter set contains filter tuples for each ancestor conjunct, we have 

FS0 = Ü FSi (12) 
t=i 

Union removes duplicate filter tuples. Duplicates can arise because the same con- 

junct may be an ancestor from more than one input channel. 

Since we are presumably considering one conjunct graph (that may be instanti- 

ated a number of times at run-time), all messages in that conjunct graph have the 

same initial number of substitutions. 

Equation 11 (in section 3.3.2) showed how the expected number of solutions for 

a set of conjuncts could be computed. Notice that each compile-time message in 

the set returned by Sim-CP is a solution of the set of conjuncts associated with 

the ancestor processes of the normal process being considered. Therefore, for each 

initial substitution for the conjunct graph, the expected number of solutions of 

the ancestor conjuncts, Nint, that will be generated by Sim-Merge is given by the 

equation: 

Nint = n d&) * n w <13) 
i/i€V FPiZFPSo 

where V is the union of the sets of bound variables in the substitutions of the input 

messages and FPS0 is the set of filter probabilities contained in the filter tuples 

belonging to FS0. For example, if 

F50 = {<1,.5>,<2,.75>} 

where < 1, .5 > indicates that the filter probability of the first literal is .5, then 

FPS0 = {.5, .75} 

Moreover, the total expected number of solutions, N0, will be given by the 

equation: 

N0 = Nix Nint (14) 
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Plugging equation 13 into equation 14, we get 

N0=Ni x n d(Vi) x n Fpi (is) 
u,-6V FPitFPS 

Figure 30 shows this computation for the as(X,Y)" box. The input compile-time 

messages are 

<2,{X = ticl},l,<l,l > > 

and 

< 2, {XI = uc3, Y = ucA}, 1, {< 2,1 >} > 

Equation 12 is used to compute FS0. 

FS0=[jFSi = {<l,l>,<2,l>} 
»=i 

Equation 15 is used to compute N0. 

N0 = Nix n d{vi) x     II     Fpi = d(X) x d(Y) xlxl = 2x2 = 4 
vi€V FPi€FPS 

Since the substitutions are consistent, S0 is obtained by taking the union of the two 

input substitutions. 

S0 = {X = ucl,Xl = uc3,y = uc4} 

3.3.5.2    Response of Normal Process to Compile-time Messages on Vir- 

tual Input Channel 

In real PM, each message on a virtual input channel contains a substitution and 

this substitution applied to the literal associated with the normal process represents 

a goal to solve. Rules and facts associated with the normal process are applied to 

the goal in an attempt to reduce or solve it. The rest of this section describes the 

behavior of the process for one of these applicable rules/facts. The same behavior 

is repeated for each rule/fact. 

Let the compile-time message on the virtual input channel be 

<Ni,Si,NIi,FSi> 



96 CHAPTER 3.   COST FUNCTION 

and the compile-time message on the subtask channel be 

<N0,S0,NI0,FS0> 

The total number of actual messages represented by the input compile-time 

message is N{. Some of the associated goals will unify with the literal representing 

the head of the rule or the fact. The probability of unification can be computed 

as shown in section 3.3.3. Let PU be this probability. The number of successful 

unifications, N0, in case a rule is used is given by the equation: 

N0 = NixPU (16) 

In case we are dealing with a fact (as opposed to a rule) and the number associated 

with the fact is NF, then the number of successful unifications, N0, is given by the 

equation: 
N0 = NiXPUx NF (17) 

Also, NI0 will be equal to N0. S0 = {} and FS0 = {} because no conjunct in the 

new conjunct graph will have been been solved as yet. The invocation substitution 

is associated with the tail process of the conjunct graph as described in chapter 2. 

The head process of the new conjunct graph passes this message unchanged to 

each of its output channels. 
As an example, look in figure 30 at the response of the "s(X,Y)" process to the 

compile-time message on its virtual input channel. This message is 

< 4,{JC =ucl,Xl = ucZ,Y = -uc4},l,{< 1,1 >,< 2,1 >} > 

Since the domain of each variable X and Y is 2, the probability of unification, PU, 

of the goal "stud^)" with the fact "s(uc5,uc6)" is 

Therefore, using equation 17 

No = NixPUxNF = 4x 0.25 x 2 = 2 

NI0 is equal to N0. 

FS0 = {} 
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3.3.5.3    Response of Tail Process to Compile-time Messages on Virtual 

Input Channel 

Let the compile-time message on the input channel be 

<Ni,Si,NIi,FSi> 

and the compile-time message on the task channel be 

<N0,S0,NI0,FS0> 

Since the tail process does not solve any goal as such, N0 = N{, NI0 = JV7,-, and 

FS0 — FSi. The only difference is that 

S0 = Composition(IS, 5,) 

where IS is the invocation substitution.2 

As an example, look in figure 30 at the response of the tail process below 

"n(Xl,Y)" to the message on its input channel. The message is 

< 2,{},2,{} > 

Notice that, in this case, since there is only one input to the tail process, the virtual 

input channel is the same as the input channel. The invocation substitution is 

{Y = uc4}. Therefore, 

S0 = Composition({Y = uc4},{}) = {Y = uc4} 

The rest of the components of the message on the solution channel are the same as 

the ones for the message on the input channel. 

3.3.5.4    Response of Normal Process to Compile-time Messages on Sub- 

solution Channels 

In this case, the computation depends on the compile-time message (on the virtual 

input channel to the normal process) that is associated with the solution being 

reported (on the subsolution channel). Let this compile-time message be 
2 See chapter 2 for a description of invocation substitution. 
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<N1,SUNIUFS1> 

Also, let the compile-time message on the subsolution channel be 

<N2,S2,NI2,FS2> 

and the compüe-time message on the output channel from the normal process be 

<N3,S3,NI3,FS3> 

First, since the message on the output channel is associated with the same 

conjunct graph, we have 

Nh = Nh (18) 

Second, just as in real PM, 

53 = Composition(S\, S2) U") 

Since the total number of messages on the subsolution channel must be the same 

as the total number of messages on the output channel of the normal process, 

N3 = N2 (20) 

For each real message on the virtual input channel, the cardinality of the domain 

of possible solutions is 

n dw 
where V is the set of variables in the goal literal (i.e., the literal obtained by instan- 

tiating the literal associated with the normal process with the substitution on the 

virtual input channel). Therefore, the number of possible solutions for N, messages 

is 

Nx x n d(v<) 
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However, the actual number of solutions obtained is N3. Therefore, the filter prob- 

ability (FP) associated with this set of solutions is given by the equation 

FP = „ 3    ,,   x (21) 

The filter tuple (FT) associated with this is < n,FP >, where n is the position of 

the literal associated with the process in the antecedents of the rule that generated 

the conjunct graph. Therefore, 

FS3 = FSx U {FT} 

As an example, look in figure 30 at process "n(Xl,Y)". In this case, 

< NuSuNI^FSi >=< 2, {XI = uc2},l,{< 1,1 >} > 

< N2,S2, NI2, FS2 >=< 2, {Y = uc4}, 2, {} > 

Therefore, from equation 19, we have 

S0 = Camposiiion({Xl = uc2}, {Y = uc4}) = {XI = uc2, Y = uc4} 

From equation 18, we have 

NI3 = Nh = 1 

Also, equation 20 gives us 

N3 = N2 = 2 

The filter probability of the conjunct "n(X,Y)" for this compile-time message is 

given by equation 21 

FP= *2 = ^- = 05 
NixUVievd(vi)      2x2 

because the only variable in the goal is "Y" and its domain is 2. Therefore, 

FS0 = {< 1,1 >,< 2,0.5 >} 
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3.3.6    Strategy for Dealing with Duplicate Solutions 

Some rules can generate duplicate solutions to a goal. This can happen if a variable 

occurs in the tail of the rule but not in its head. For example, consider the rule 

h(X,Z):-tl(X,Y),t2(Y,Z) 

If the subgoal tl(X, Y) produced the two solutions {X = 3, Y = 5} and {X - 

3, Y = 6} and the subgoal t2(Y, Z) produced the two solutions [Y = 5, Z = 8} and 

{Y = 6,Z = 8}, then {X = 3, Z = 8} would appear twice as a solution for h(X, Z). 

The communication estimation algorithm presented so far has to be modified if 

duplicates of this form are to be considered. 

One more piece of information—a duplication bag—needs to be associated with 

each compile-time message. The duplication bag associated with a compile-time 

message includes the duplication factors of all the conjuncts that have been pro- 

cessed so far in the conjunct graph. A duplication factor for any particular conjunct 

in a conjunctive goal is a number, greater than or equal to one, and is a probabilistic 

measure of how many actual solutions are produced for each unique, actual solution 

of that conjunct. Therefore, if the duplication factor is 3 and we expect the total 

number of solutions generated to be 5, then we expect 5/3 = 1.67 of them (proba- 

bilistically) to be unique. In the example given above, the literal goal that is solved 

by the given rule would have the duplication factor 2.0 associated with the solution 

{X = 3, Z = 8}. Conjuncts that are ancestors along more than one path will have 

as many copies of their duplication factors in the duplication bag. This is the reason 

a duplication bag is a bag and not a set Just like a filter set, a duplication bag 

contains 2-tuples, one for each literal in the antecedent of the rule that generated 

the associated conjunct graph. Each tuple contains: (1) a number indicating the 

position (leftmost being 1) of the literal in the antecedents of the rule and (2) the 

duplication factor for the literal that led to the set of substitutions associated with 

the compile-time message. 
Just as equation 11 (reproduced below as equation 22) led to a particularly 

simple formulation of the Communication Estimation algorithm for the no duplicate 

solutions case, there is a similar equation for the duplicate solutions case. 
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N= n divi)xf[FP(Ci) (22) 

The number of solutions N for a set of conjuncts (taking duplicates into account) 

is given by the equation below: 

N=H d(Vi) x n FP(d) x n *>& (23) 
v.€V t=l DFteDFB 

where V is the set of variable in the conjunctive goal, d{X) gives the size of the 

domain of variable X, FP(d) is the filter probability of conjunct Ct, and DFB 

is the duplication factor bag of the set of conjuncts. The duplication factor bag is 

the bag of duplication factors associated with the set of conjuncts. The number of 

instances of each duplication factor in the duplication factor bag is the number of 

distinct paths from the associated conjunct to the Tail process associated with the 

conjunctive goal. For example, in figure 31, there are 2 instances of the duplication 

factor associated with "a" and 1 instance each of the duplication factors associated 

with "b" and "c" in the duplication factor bag for the conjunctive goal. If the 

duplication factors of the 3 conjuncts a, b, and c are DFX, DF2, and DF3 respectively, 

then the duplication factor bag for the conjunctive goal is $DF1,DFi,DF2,DF3 1 

In this case, 

IJ     DF = DFl x DFt x DF3 
DFitDFB 

In particular, if DFX = 2, DF2 = 1, and DF3 = 1, then 

IJ     DFi = 22 x 1 x 1 = 4 
DFitDFB 

In other words, four copies should be expected (on the average) for each unique 

solution of the conjunctive goal. 

Again, just as in the Communication Estimation Algorithm (with no duplicates), 

the algorithm with duplicates follows naturally from the formulation of the problem 

given in this section. The detail in section 3.3.7 may be skipped safely on the first 

reading of the dissertation with no loss of continuity. Interested readers may return 

later for more detail. 
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Figure 31: A Conjunctive Goal 

3.3.7    Communication Estimation Algorithm (with Dupli- 

cates) 

The description of the algorithm is divided into four parts just as it was done for 

the no duplicate case. Also, only the differences from the no duplicate case will be 

explained. 

3.3.7.1    Analog of the CP function 

There are n input channels and the messages on the channels are 

<NitSi,NI,FSi,DBi> 

In case, the messages contain inconsistent substitutions, then the output is _L 

as before. If the output is not J_, it is a message 

<N0,S0,NI,FS0,DB0> 

Notice that the initial number of substitutions is the same for the input messages 

as the output message because all of them belong to the same conjunct graph. 

As before, 

FS0 = Ü FSt 
t=i 

However, 
n 

DB0 = ®DBi 
«=i 
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where the symbol ® denotes bag sum. 

The expected number of solutions for each initial substitution of the conjunct 

graph, Nint, is given by an application of equation 23: 

Nint = n d(Vi) x     H    FPtx      IJ     DFt 
«,€V FPitFPS DFiZDFBo 

where DFB0, the duplication factor bag, is the bag of duplication factors in the 

duplication tuples belonging to DB0. For example, if the duplication bag is [ < 

1,1.5 >,< 1,1.5 >,< 2,3.5 > 2, where 1.5 is the duplication factor for the first 

conjunct and 3.5 is the duplication factor for the second conjunct, then the dupli- 

cation factor bag is Ü.5,1.5,3.5 1 Notice the slight variation from equation 13 for 

the no duplicate case. 

The formula above gave the expected number of solutions for each initial sub- 

stitution. Therefore, the total expected number of solutions, N0, is given by 

N0=Ni x n d(vi) x n ppix n DF
< 

«,€V FPiGFPS DF&DFB 

3.3.7.2    Response of Normal Process to Compile-Time Messages on Vir- 
tual Input Channel 

Let the compile-time message on the virtual input channel be 

KN^S^NI^FS^DB^ 

and the compile-time message on the subtask channel be 

<N0,S0,NI0,FS0,DB)0> 

In case, a rule is used to reduce the goal, 

N0 = NiX PU 

where PU is the probability of unification of the goal with the head of the rule. 

In case, a fact, with an associated number of NF, is used to reduce the goal, 

N0 = Ni xPUxNF 
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where PU is the probability of unification of the goal with the fact. Again, we have 

NIn = N0 i0 — -"o 

Also, 

£> = {} 

FS0 = {} 

DB0 = O 

IE ] stands for an empty bag. 

3.3.7.3    Response of Tail Process to Compile-Time Messages on Virtual 

Input Channel 

Let the compile-time message on the input channel be 

<Ni,Si,NIi,FSi,DBi> 

and the compile-time message on the task channel be 

<N0,S0,NI0,FS0,DB0> 

As before, 

In addition, 

N0 = Ni 

S0 = Composition(IS, Si) 

NI0 = Nli 

FS0 = FSi 

DB0 = DB{ 
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3.3.7.4    Response of Normal Process to Compile-Time Message on Sub- 

solution Channel 

Let the message on the virtual input channel to the normal process (that led to the 

creation of the subsolution in question) be 

<N1,SUNIUFS1,DB1> 

Also, let the compile-time message on the subsolution channel be 

<N2,S2,NI2,FS2,DB2> 

and the compile-time message on the output channel from the normal process be 

<N3,S3,NI3,FS3,DB3> 

As before, 

N3 = N2 

S3 = Composition(Si, S2) 

NI3 = Nh 

The computation of the filter probability and duplication factor for the conjunct 

associated with the normal process is somewhat involved and needs additional no- 

tation. To make the notation easier to understand, a running example is used. 

To begin with, let FP be the filter probability of the conjunct and DF be its 

duplication factor. Let the literal associated with the normal process be G and the 

rule used to reduce the goal be 

G' : -SG' 

where SG' is a set of conjuncts. 

As our running example, consider the case where the rule is as given below. 

h(a,X',Z',Q'): -tl(X',Y'),t2(Y',Z') 

Therefore, 

G' = h(a,X',Z',Q') 



106 CHAPTER 3.   COST FUNCTION 

and 
SG' = {tl(X',Y%t2(Y',Z')} 

Also, let G, the literal associated with the normal process, be as given below. 

G = h{P,X,Z,W) 

Assume that the domains of all the variables have cardinality 2. 

Let Ivors be the function that returns the set of variables in a literal. For 

example, lvars(h(P,X,Z,W)) = {P,X,Z,W}. Also, let slvars be the function 

that returns the set of variables in a set of literals. For example, 

slvars({tl(X\ Y'), t2(Y\ Z')}) = {X\ Y\ Z'} 

Notation related to a goal: The goal to be solved is G \Sl. VSx, the set of 

variables in the goal, is given by the equation below. 

VS1=lvars(G\Sl) (24) 

For the running example, let 5a = {W = b}. Therefore, 

VSi = lvars(G |Sl) = lvars(h{P,X,Z,b)) = {P,X,Z} 

SDi, the cardinality of the domain of solutions of the goal, is given by the 

equation below. 

SD1= n <*("<) <25> 
vievsi 

For the example, 

SDi = d(P) x d(X) x d(Z) = 2x2x2 = 8 

Notation related to an instance of a goal: An instance of the goal G \Sl that 

unifies with the head of the rule is solved. Let mgu represent the function that 

computes the most general unifier. Therefore, the most general unifier US of the 

goal G |Sl with the head of the rule G' is given by the equation below. 
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US = mgu{GuG') (26) 

For the example, 

US = {P = a,X' = X,Z' = Z,Q' = b} 

The instance of the goal that needs to be solved, is therefore 

G Is, \us 

For the example, this goal instance is 

h(a,X,Z,b) 

VS2, the set of variables in this instance of the goal, is given by the equation 

below. 

VS2 = lvars(G\Sl\us) (27) 

For the example, 

VS2 = {X,Z} 

g, the cardinality of the domain of solutions of the instance of the goal, is given 
by the equation below. 

9=    II   d(v<) (28) 

For the example, 

g = d(X) x d(Z) = 2x2 = 4 

As before, the invocation substitution IS is the subset of the most general unifier 

US that contains bindings of variables in the goal G |Sl only and not the bindings 

of variables in G', the head of the rule. 

For the example, 

IS = {P = a} 
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Notation related to a conjunctive subgoal:    As mentioned before, the rule in 

question is 

G' : -SG' 

SG2, the conjunctive subgoal that needs to be solved, is given by the equation 

below. 

SG2 = SG'\us (29) 

where US is the most general unifier of the goal and the head of the rule (as 

given in equation 26). 

For the example, 

SG2 = {tl(X,Y'),t2(Y',Z)} 

VS4, the set of extra variables that are contained in SG2, the conjunctive sub- 

goal, and not in VS2, the set of variables in the instantiated goal (see equation 27), 

is given by the equation below. 

VS4 = slvars(SG' \us) - VS2 = slvars{SG' \us) - lvars(G \Sl \us) (30) 

For the example, 

VS4 = {X,Y',Z}-{X,Z} = {Y'} 

h, the cardinality of the domain of these extra variables is given by the equation 

below. 

h= n <*(*o (3l) 
vievst 

For the example, 

h = d(Y') = 2 
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Computation of filter probability and duplication factor:    Let DF2 be the 

compounded duplication factor of the conjuncts of the subgoal. Therefore, 

DF2 =     n     Di (32) 
DjZDF&t 

where DFB2 is the duplication factor bag associated with the duplication bag 

DB2 (i.e., the set of duplication factors in the duplication bag DB2). Remember 

that N2 is the total number of solutions being reported. N2/NI2 gives the number 

of solutions for each initial substitution because NI2 is the initial number of substi- 

tutions. Dividing N2/NI2 by DF2 gives m, the number of unique solutions of the 

subgoal for each initial substitution. In other words, 

m = NI2 xDF2 
(33) 

Now, m unique solutions in the subgoal solution domain (cardinality = gxh) are 

to be mapped into the instantiated goal domain (cardinality = g). For the example, 

the solutions for the subgoal are distributed over the cross-product of the domains 

of the variables in the set {X,Y',Z}. These are mapped into the cross-product 

of the domains of variables in the set {X, Z}. The problem is to find how many 

unique solutions will be obtained in the target domain. Since the distributions are 

random, the probability p' of a particular member of the instantiated goal domain 

not being one of the solutions is given by 

Therefore, the probability p that a particular member is one of the solutions is 

given by 
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g x h — h 

p = l-p> = l-±- _£- (34) 

As pointed out by Treitel [69], the analysis given above is correct, strictly speak- 

ing, only when m is an integer. Since the value of m is an expected value based 

on a probabilistic analysis, it may not be an integer. Stirling's approximation for 

binomial coefficients can be used to solve this problem. 

There is another problem that arises because the analysis above assumes that 

the value of m is known exactly as opposed to being an expected value. Since p 

is not a linear function of m, the expected value of p cannot be obtained simply 

by using the expected value of m in equation 34. This problem is ignored in this 

thesis. 

Since the probability of a particular member of the instantiated goal domain 

being a solution is p and the size of the domain is g, the expected number of unique 

solutions in the domain is p x g. Moreover, since the total number of solutions is 

m, the additional duplication factor due to this mapping (DFa) is given by 

DFa = 
P*9 

The duplication factor for this solution to the goal, DF, is given by multiplying 

DF2, the duplication factor for the subgoal solution (as given in equation 32), and 

this additional factor. 

DF = DF2 x DFa 

The filter probability for this solution to the conjunct is obtained by dividing 

the number of unique solutions obtained (= $£) for each goal (= $£ -^ JVi) by the 

cardinality of the domain of possible solutions for the goal (= 5£>i). Therefore, 

FP = 
Nt x SDi x DF 
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Algorithm Complexity 

Communication 
Estimation 

Up to exponential factor 
less than run-time 
computation 

Communication 
Cost 
Computation 

0(p2) 

Communication 
Cost 
Recomputation 

0(p) 

p = Number of partitions 

Table 2: Complexity Results for Communication Cost Computation 

Now, DF and FP can be worked into the output message in the 2-tuple format. 

Let the position of the conjunct associated with the normal process be k. Therefore, 

FS3 = FS2U{<k,FP>} 

DB3 = DB2® l<k,DF> 1 

3.3.8    Complexity 

Complexity results are summarized in table 2. More explanation including the basis 

for the results is given in the following sections (3.3.8.1 and 3.3.8.2). 

3.3.8.1     Communication Estimation Algorithm 

Using unknown constants in the abstract backward-chaining deduction ensures that 

the number of logical inferences in the abstract deduction is either equal to or less 
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than the number of inferences when no unknown constants are used. In the worst 

case, no reduction takes place in the number of logical inferences. In the best case, 

the number of logical inferences can be reduced by an exponential factor (as was 

seen earlier in section 3.2. 

3.3.8.2    Communication Cost Computation Algorithm 

If there are p partitions, complexity for this computation is 0(p2) because all pairs 

of partitions may communicate with each other in the worst case. In case there are 

multiple copies, additional communication needs to be accounted for as described 

in section 3.1.4. However, this only takes a constant number of operations for each 

pair of partitions and therefore the complexity remains 0(p2). 

If the communication cost needs to be recomputed after a single partition is 

reallocated to another processor, the cost of the recomputation is 0{p) because the 

partition in question may communicate with all other partitions in the worst case. 

Again, the presence of multiple copies makes no difference to the complexity. 

3.4    Processor Multiplexing Cost Computation 

The computation of processor multiplexing cost (defined in section 3.1.5) is done by 

two algorithms. The first algorithm is called the Processing Interval Assignment 

algorithm. This algorithm performs an abstract simulation of PM, similar to the 

one for estimating communication. A side-effect of the simulation is the assignment 

of processing intervals for the operations that need to be performed. A processing 

interval is a 3-tuple of a start time, a finish time and a processor load. The second 

algorithm is called the Processor Multiplexing Cost Computation algorithm. This 

algorithm takes the output of the Processing Interval Assignment algorithm and an 

allocation and computes the processor multiplexing cost. 
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3.4.1    Cost Model 

To estimate any cost, one needs a cost model. A cost model specifies the cost 

incurred for some set of basic operations. A useful cost model is one that picks 

these basic operations such that all operations that have any associated cost must 

be decomposable into these basic operations. This subsection presents a useful cost 

model for PM. 

The basic operations chosen with their associated cost are: 

• Selecting the next task to work on: We assume that any task that is ready to 

be executed may be picked. Cost assigned is 0. 

• Selecting rules/assertions to unify with goal:  This is essentially a database 

indexing operation. Cost is assumed to be a constant Kj. 

• Plugging a substitution into a literal: Cost is Kp. 

• Doing a successful unification: Cost is K\j. 

• Doing an unsuccessful unification: Cost is Kpu- 

• Doing a successful application of the Merge function: Cost assigned is 0. 

• Doing an unsuccessful application of the Merge function: Cost assigned is 0. 

Note that the constants used above are dependent on the multiprocessor used. 

These constants have units of time such as seconds, for example. 

3.4.2    Processing Interval Assignment Algorithm 

This algorithm is split into four parts just as the Communication Estimation algo- 

rithm was. In that algorithm, the response of processes to messages on different 

channels was described in terms of their communication requirements. We now do 

the same in the present algorithm in terms of processing requirements. 
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A compile-time message is augmented to include two other pieces of information: 

(1) A start time, ST, and (2) a finish time, FT.   In its entirety, a compile-time 

message looks like: 

<N,S,FS,DB,ST,FT> 

Fields other than ST and FT have been defined before in section 3.3. It is assumed 

that the JV actual messages that this represents are distributed uniformly in time 

from ST to FT. For the top-level goal, ST and FT are both 0. This is interpreted 

to mean that the top-level goal is given at time 0. 

The basis for the probabilistic analysis here is the same as that for the Com- 

munication Estimation algorithm. All the detail that follows now for the four parts 

of the Processing Interval Assignment Algorithm can be safely skipped on the first 

reading without loss of continuity. Interested readers can return later for the addi- 

tional detail. 

3.4.2.1    Response of Normal Process to Compile-time Messages on Vir- 

tual Input Channel 

Let the compile-time message on the virtual input channel be 

< Ntn, Sin, NIin, FSin, DBin, STin, FTin > 

There are two cases that need to be considered. In the first case, there are n 

rules that may be used to reduce a goal. In the second case, NF facts may be used 

to solve the goal. These cases are treated separately. If there are both rules and 

facts to reduce/solve the goal, then it is easy to see how a combination of the two 

procedures may be used. 

Case I: Rules only If there are n rules that may be applied to the goal, then 

n subtask channels will be set up and one message will be sent on each. We will 

assume that unifications with the rules are done in order from 1 to n. Assume also 

that the probability of unification of the goal with the fc'th rule is PUk. Let the 

compile-time message on the fc'th subtask channel be 

< Novtu, Sout,,, NI<Mtk, FSout,,, DBaut*, STwtu, FTmtk > 



3.4.  PROCESSOR MULTIPLEXING COST COMPUTATION 115 

Remember that the amounts of time taken for plugging in a substitution into a 

literal, for indexing the rules/assertions to unify with a goal, for a successful unifi- 

cation, and for an unsuccessful unification, are Kp, Ki, Kxj and KFU respectively. 

For each actual message to a normal process, the substitution in the message is 

applied to the literal associated with the process, all relevant rules/assertions are 

indexed, and unifications are attempted between the goal and the rules/assertions. 

Assume that there are n rules and unifications are attempted in order starting with 

the rule numbered 1 and ending with the rule numbered n. Therefore, A&, the time 

taken from the input of an actual message at a process to the possible output of a 

message on the k'th subtask channel (corresponding to the k'th rule) is given by: 

Ak = KP + Ki + J2[PUi xKu + (l- PUi) x KFU] (35) 

Therefore, STouth and FToutk are given by: 

5Toutk = 5rin + Afc (36) 

FT^^FTin + Ak (37) 

We will now characterize the processing interval, < STj,FTi,PLi >, associated 

with the processor for this computation. The start time, STi, of the processing 

interval is given by: 

STt = STin (38) 

The finish time, FTi, of the processing interval is given by: 

FTj = FT«*. (39) 

Let PT be the the total amount of processing in time units for this computation. 

PT = Nin x An (40) 

Therefore, the processor load PLj, or the average number of virtual processors 

busy in the processing interval, is given by: 
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Plugging in the value of PT from equation 40 into equation 41, we get: 

M'=££w, (42) 

Of course, all other fields of the output compile-time messages can be computed 

using the Communication Estimation algorithm. 

Case II: Facts only In this case, NF facts are available for attempting to solve 

the goal. The compile-time message on the virtual input channel is 

< Nin,Sin,NIin,FSin,DBin,STin,FTin > 

as before. In this case, only one subtask channel is set up since the whole set of 

NF facts is considered in one pass (because they are included in one fact pattern). 

Let the compile-time message on the subtask-channel be 

< No„t > Sout, NIout j FSout» DBout j STout, .r Tout > 

As before, Afc, the time taken from the input of an actual message at a process 

to the (possible) output of a message on the subtask channel is given by: 

k 

Ak = KP + Ki + Y,[PU xKu + (l- PU) x KFU] (43) 
«=i 

Since only one subtask channel is set up, ST^ in this case is the minimum 

of the STouti's in the previous case (with rules only) and FT^t in this case is the 

maximum of the FT^i in the previous case. Therefore, 

ST^ = STin + Ax (44) 

FT^ = FTin + ANF (45) 

We will now characterize the processing interval, < ST^FT^PLi >, associated 

with the processor for this computation.   The start time, STr, of the processing 

interval is given by: 
STi = STin (46) 
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The finish time, FTj, of the processing interval is given by: 

FTi = FT^t (47) 

Therefore, the processor load PLi, or the average number of virtual processors 

busy in the processing interval, is given by: 

PL, = ^xA"f (48) 1     FTi-STi v    ' 

3.4.2.2 Response of Tail Process to Compile-time Messages on Virtual 

Input Channel 

Since no basic operations are included in this computation, no cost is incurred. A 

message on the virtual input channel produces a message on the solution channel 

immediately with no time delay. 

3.4.2.3 Response of Normal Process to Compile-time Messages on Sub- 

solution Channels 

Again, no basic operations are included and, therefore, the computation is free. 

3.4.2.4 Analog of the CP function 

Sim-Merge, the function described in the Communication Estimation algorithm, 

must be augmented further. The additional computation to be performed by Sim- 

Merge is described below. 

Let there be n input channels and the messages on the channels be 

< Ni, Sh NI, FS{,DBi, STi,FT{ > 

In case, the messages contain inconsistent substitutions, then the output is _L 

as before. If the output is not _L, it is a message 

< N0,S0,NI,FS0,DB0,ST0,FT0 > 

In this computation, no basic operations are included. However, one still has to 

assign a start time, ST0, and a finish time, FT0, to the output message. ST0 is the 
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earliest possible time that an actual message associated with the output compile- 

time message is sent out. Notice that there must be at least one actual message 

on each of the input channels to produce an actual message on the virtual input 

channel. Therefore, 

ST0 = maxSTi (49) 

Similarly, FT0 is the latest possible time that an actual message associated with 

the output compile-time message is sent out. Therefore, 

FT0 = xnaxFTi (50) 

A uniformity assumption has been made here that all actual messages associated 

with the output compile-time message are uniformly distributed over this interval 

from ST0 to FT0. 

3.4.3    Processor Multiplexing Cost Computation Algorithm 

The algorithm will be referred to by its abbreviated name PMCCA. The input is 

a set of sets of processing intervals—one set for each processor that will be used at 

run-time. The output is a number that represents the processor multiplexing cost 

for the multiprocessor. 

For this algorithm, processing intervals are represented in a different manner 

than before. Each processing interval is represented as two elements, one for each 

end-point of the interval. Some additional information is also included in each 

element. In all, an element is a 5-tuple with the following fields: 

1. Type: This is either start or finish depending on whether this element repre- 

sents the start end-point or finish end-point for the interval in question. 

2. Time:  This is the time associated with the start or finish end-point of the 

interval in question. 

3. Load: This is the processor load associated with the processing interval. 
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4. CLoad: This is the cumulative load of all intervals that overlap at this instant 

in time. 

This algorithm uses an auxiliary procedure PMCCA-1 that takes the set of 

processing intervals associated with a single processor and returns the processor 

multiplexing cost for that processor only.3 After this auxiliary procedure is run on 

each processor, the sum of all the individual processor multiplexing costs gives the 

processor multiplexing cost for the multiprocessor. 

The procedure PMCCA-1 uses an abstract data structure that we will call a PQ- 

list. The name suggests the similarity of the data structure to both priority-queues 

[3] and sorted lists. The elements are maintained in a 2-3 tree [3], for example, 

to get log performance for insertions and deletions. They are also maintained in a 

sorted list (in increasing order). This is easy because 2-3 trees have leaves in sorted 

order anyway from left to right. In all, the data structure supports the following 

abstract operations: 

1. InsertPQL(PQL, element, key): This inserts the element element into the 

PQ-list PQL in log time. In addition, the CLoad field of the element is set 

to the CLoad field of the previous element (in sorted order). If there is no 

previous element, then the field is set to zero. 

2. DeleiePQL(PQL, element): This deletes element from PQL in log time. 

3. EnumeratePQL(PQL, elementl, elements): Enumerates all elements in PQL 

in sorted order from the element elementl to the element elements. This is 

done in time linear in the number of elements enumerated. 

A detailed description of the procedure PMCCA-1 is given in appendix B. How- 

ever, a rough description will be given here. Each processor has an associated PQ- 

list and a variable PMC. PMC is the current value of the processor multiplexing cost 

for the current set of processing intervals in the PQ-list. PMC is zero initially when 

there are no elements in the PQ-list. Each processing interval is inserted into the 
3Notice that processor multiplexing cost is defined for a multiprocessor but a single processor is 

just a special case of a multiprocessor. 
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PQ-list as two elements using a procedure called InsertPI (for Insert Processing In- 

terval). When elements are inserted into the PQ-list, the data-structure itself must 

be modified as necessary (by using the abstract operation InsertPQL for PQ-lists). 

In addition, the CLoad fields of all elements whose Time fields fall within the time 

interval of the processing interval may have to be modified. After all processing 

intervals have been inserted into the PQ-list, the value of PMC is the processor 

multiplexing cost for the processor. 

Another procedure called DeletePI is used to remove processing intervals from 

the PQ-list. DeletePI is not used if the processor multiplexing cost is to be computed 

once only for a particular allocation. However, it is useful when more than one 

allocation needs to be considered. The next chapter will demonstrate this need. 

Both InsertPI and DeletePI do a constant number of operations at most for every 

element in the PQ-list that lies between the two end-points (in sorted order). This 

can be verified by looking at the detailed description in appendix B. In the worst 

case, this set of elements could include every element in the PQ-list. In addition, 

the associated InsertPQL and DeletePQL operations take log time (in the number 

of elements in the PQ-list). Therefore, the total time complexity of both InsertPI 

and DeletePI is 0{n), where n is the number of elements in the PQ-list. 

3.4.4    Complexity 

The complexity results for the processor interval assignment algorithm and the 

processor multiplexing cost computation algorithm are summarized in table 3. More 

explanation including the basis for the results is given in the foUowing sections 

(3.4.4.1 and 3.4.4.2). 

3.4.4.1    Processor Interval Assignment Algorithm 

Just as in the case of the communication estimation algorithm, an abstract backward- 

chaining deduction is done using unknown constants as the abstraction. Also, the 

number of additional operations for each logical inference is constant. Therefore, the 

complexity of this algorithm is the same as that for the communication estimation 
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Algorithm Complexity 

Processor 
Interval 
Assignment 

Up to exponential factor 
less than run-time 
computation 

Processor 
Multiplexing 
Cost 
Computation 

0(q r2) 

Processor 
Multiplexing 
Cost 
Recomputation 

0(q r2) 

q = Number of processors 

r = Number of subgoals at compile-time 

Table 3: Complexity Results for Processor Multiplexing Cost Computation 
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algorithm. 

In fact, both the communication estimation algorithm and the processor inter- 

val assignment algorithm can be performed concurrently using just one abstract 

backward-chaining deduction. This is, in fact, how they are implemented. Al- 

though, this cost savings is important for an implementation, complexity results 

remain the same whether the two algorithms are performed concurrently or sepa- 

rately. 

3.4.4.2    Processor Multiplexing Cost Computation Algorithm 

Assume at first that no multiple copies are allowed for partitions. Let r be the 

number of subgoals generated during the abstract backward-chaining deduction of 

the Processor Interval Assignment Algorithm. Each subgoal will have an associated 

processing interval. In the worst case, all subgoals may be allocated to the same pro- 

cessor and, therefore, the same PQ-list. As mentioned before, InsertPIand DeletePI 

take 0(n) time, where n is the number of elements in the PQ-list. Therefore, the 

time taken for the combined set of InsertPh to compute the processor multiplexing 

cost initially is 0(r2). 

Now, consider the case with multiple copies. Let q be the number of processors 

in the system. Now, the maximum number of copies possible for any partition is 

q. If the number of copies of a certain partition is m, then each of its processing 

intervals in the single copy case is now modelled as m processing intervals, each 

with i of the original processor load. The time taken for this algorithm is the most 

when all r processing intervals have q copies associated, one in each processor. The 

combined set of InsertPh will take 0(qr2) time. Note that it is not 0(q2r2) because 

any single processor can only contain one copy of a partition. 

Now, let us say that reallocations are allowed and a single partition may be 

reallocated to another processor. Processor multiplexing cost may be computed 

by using DeletePIs on the associated processing intervals to remove them from 

the original processor's PQ-list and then applying InsertPh to insert the same 

processing intervals into the new processor's PQ-list. Since the partition in question 
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may include all the subgoals in the worst case, the cost of recomputation is 0(qr2)— 

the same as the worst case cost for the original computation. In the typical case, 

however, one would hope to do a lot better than this. 

3.5     Summary 

This chapter has presented the formal definition for the cost function that is the 

basis for allocation. The cost function relates well to intuitive notions of the quality 

of allocations. One way to view the cost function is that it treats all communication 

delays and delays due to sequentialization of parallel tasks as being on the critical 

path of the computation in the worst case. Since the parallel time for execution 

is the same for all allocations, it is the extra delay due to communication and 

sequentialization that should be used (and is used) as the cost function to compare 

different allocations. 

An important feature of the cost function is that it is efficient to compute and 

recompute. Algorithms were presented to do this computation and recomputation. 

The cost function ignores two aspects of allocations that should be included in 

a future allocator, if possible. First, as mentioned above, all delays and sequen- 

tializations of parallel tasks are considered to be on the critical path. It would be 

better to work without this assumption. Second, the communication delay function 

does not take congestion of communication channels into account. Despite these 

two simplifications, the cost function serves as a good basis for an allocator as the 

next chapter will show. 
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Chapter 4 

Allocation Algorithms 

This chapter describes the algorithms used by the allocator to perform a limited 

search of the space of allocations. In addition, the chapter includes experimental 

results obtained from an implementation of the allocator and PM. 

There are two main algorithms for searching the space of allocations. Both 

use the cost function and associated algorithms described in the previous chapter. 

The first algorithm is a greedy algorithm in which partitions are allocated one at 

a time. A partition is allocated to the lowest cost processor without re-allocating 

any partitions that were allocated previously. The second algorithm is a local 

minimization algorithm. This algorithm consists of a sequence of cost-reducing 

re-allocations of partitions to neighboring processors. 

Both allocation algorithms are described in detail next followed by experimental 

results. Some related work is also discussed at the end of the chapter. 

4.1    Greedy Allocation 

This section contains the specifications of the algorithm, a description of the al- 

gorithm, a discussion of its complexity, and an example to show that it does not 

necessarily produce a locally optimal solution. However, the section on experimen- 

tal results will show later that, in a typical case, greedy allocation can produce good 
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allocations by itself. 

CHAPTER 4.   ALLOCATION ALGORITHMS 

4.1.1     Specifications 

Inputs 

1. P: a set of partitions of the database. 

2. C: a function that takes two partitions Px and P2 and returns a tuple of 

the form < data,number > where data is the amount of data (in bytes) and 

number is the number of messages sent from partition Px to partition P2. data 

and number are expected values in a probabilistic sense. 

3. PI: a function that takes a partition and returns the set of processing intervals 

associated with the partition. 

4. Multiprocessor constants: These are Ku *i, and K3 used to compute com- 

munication cost as given by equations 5 and 6. 

5. Topology: This includes (1) distances between all pairs of processors and (2) 

lists of neighbors of each processor. 

Outputs 

1. Allocation: A many-to-one mapping from the set of partitions to the set of 

processors. 

2. Number of copies for each partition: If the number of copies is greater than 

1, then the allocation above specifies the central processor for the cluster of 

copies. The number of copies will determine the processors around the central 

processor that will also contain copies of the partition. 

4.1.2    Algorithm 

Let us assume for now that each partition has a single copy.   The extensions to 

handle multiple copies will be described later in this section. 
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The overall structure of the greedy allocation algorithm is as follows: Starting 

from an empty allocation, each partition is allocated one at a time. The single 

partition under consideration at any time is allocated to the processor that leads 

to the lowest cost. After a partition is allocated, it is not reallocated to another 

processor. 

This algorithm is embodied in the procedure Greedy Allocation shown in figure 

32. As shown in the figure, all inputs to the procedure are implicit. These inputs 

were described in the specifications to the algorithm given above. At the beginning 

of each iteration of the outer For loop, there is a partial allocation of some partitions 

to processors. Each iteration allocates the next partition to the processor that leads 

to the lowest cost. The inner For loop considers allocation of the partition to each 

processor in turn. The code segment "Allocate Partition to Processor1'' includes (1) 

the application of the procedure InsertPIirom chapter 3 to each processing interval 

associated with the partition Partition—with the second argument of the call to 

InsertPIbemg the PQ-list associated with the processor Processor, (2) the update of 

the cost function due to the additional communication to/from the partition from/to 

those already allocated, and (3) the update of the state of allocation reflecting that 

the partition has been allocated to the processor. The code segment "Deallocate 

Partition from Processor" includes the opposite operations. 

Multiple copies can be handled in a couple of ways. One method is more prin- 

cipled as well as more costly than the other one. I will describe this first. The only 

change required from the procedure Greedy Allocation is that the inner For loop 

needs to be changed as follows. 

"For all Processor 6 PotentialProcs do begin" 

needs to be changed to 

"For all combinations of Processor € PotentialProcs and 

NumCopies=l... Cardinality(AllProcs) do begin" 

and 

"Allocate Partition to Processor" 

needs to be changed to 
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Procedure GreedyAllocation() 
begin 

PotentialProcs <- AllProca; 
I* AllProcs is the set of all processors */ 
For all Partition € SetOf Partitions do begin 
/* SetOfPaxtitions is the set of all partitions */ 

BestCost <— oo; 
BestProc *— nil; 
For all Processor 6 Potential Procs do begin 

Allocate Partition to Processor; 
TempCost «— Cost(Allocation); 
If Tempcost < BestCost then begin 

BestCost <- TempCost; 
BestProc «— Processor 

end; /* If */ 
Deallocate Partition from Processor 

end; /* For */ 
Allocate Partition to BestProc 

end /* For */ 
end; /* GreedyAllocation */ 

Figure 32: Procedure GreedyAllocation 
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"Allocate NumCopies copies of Partition to Processor." 

This last statement is interpreted to mean that the central processor of the 

cluster of the NumCopies copies should be Processor. Call this modified version of 

the procedure GreedyAUocation'. 

Another way to handle multiple copies is to decide the numbers of copies of 

all partitions prior to using the procedure Greedy Allocation. The numbers can 

be picked heuristically. One reasonable way to pick the number of copies of a 

partition is to take the highest degree of parallelism exhibited by the partition. 

The highest degree of parallelism is simply the maximum of the processor-load 

function associated with the partition as described in chapter 3. Since the number 

of copies cannot be any arbitrary number, and certainly not a fractional number, 

the number of copies is picked arbitrarily to be the next higher acceptable number 

greater than the maximum degree of parallelism. Call this modified version of 

the procedure Greedy Allocation". This method is less expensive than the first one. 

Actual complexities of the two methods will be compared in the next section. 

Notice that in the code for the procedure Greedy AUo cation shown in figure 32, 

no mention was made of the order in which partitions are chosen for allocation 

out of the set SetOfPartitions. In practice, the order of allocation can affect the 

allocation chosen by the procedure. The order that is used in this thesis is the 

topological order associated with the dataflow* graph of the computation. If a 

partition occurs multiple times in a topological search, its first instance is chosen 

for the ordering. This order of allocation ensures that partitions are allocated only 

after previously used partitions in the dataflow* graph have been allocated, thereby 

giving the greedy allocation procedure some context in which to make reasonable 

decisions. Prior to using the topological ordering, a random ordering was used and 

discarded because it would make bad allocations for partitions that did not have 

any communicating partitions allocated before it. 

In the special case when communication delays are assumed to be zero, there is 

an even more effective order of allocation. In particular, Graham [29] has shown that 

a particular order gives an upper bound on completion time of twice the optimal 
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Algorithm Complexity 

Greedy Allocation 
2          2 

0(p q+pqr   ) 

Greedy Allocation' 
2   2      3  2x 

0(p q +pq   r   ) 

Greedy Allocation" 
2         2  2V 

0(p q+pq   r   ) 

p = Number of partitions 

q = Number of processors 

r = Number of subgoals at compile-time 

Table 4: Complexity Results for Greedy Allocation 

completion time (asymptotically when the number of processors goes to infinity). 

In this ordering, the next task chosen for execution at any time out of a DAG of 

tasks is always the one that "heads the longest chain of unexecuted tasks (in the 

sense that the sum of the task times in the chain is maximal)." Unfortunately, this 

result does not apply to the case where communication delays are non-zero. 

4.1.3     Complexity 

The complexity results for greedy allocation are summarized in table 4.   Further 

explanation including the basis of the results is given below. 

Let p be the number of partitions, q the number of processors, and r the num- 

ber of subgoals in the dataflow* graph generated during abstract backward-chaining 
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deduction for the Processing Interval Assignment algorithm as well as the Commu- 

nication Estimation algorithm. 

The time to update the communication cost function when a single partition is 

allocated to a single processor is p (see section 3.3.8). The time to update processor 

multiplexing cost when a single partition is allocated is r2 when only single copies 

are allowed and it is qr2 when multiple copies are allowed (see section 3.4.4.2). The 

combined cost is 0(p + r2) for single copies and 0(p + qr2) for multiple copies. 

Deallocation leads to the same cost and, therefore, the order of complexity for a 

combined allocation and deallocation is the same as simply an allocation. 

The outer loop is executed p times—once for each partition. For Greedy Al- 

location as well as Greedy Allocation", the inner loop is executed q times. For 

GreedyAllocation', the inner loop is executed q2 times since the cardinality of Po- 

tentialProcs in the worst case (3) multiplied by the cardinality of AllProcs (q) is 

q2. Therefore, GreedyAllocation and GreedyAllocation" require pq updates due to 

allocations and GreedyAllocation1 requires up to pq2 updates due to allocations. 

Multiplying the number of updates by the complexity of each update gives the 

complexity of the entire algorithm. Therefore, the complexity of GreedyAlloca- 

tion is 0(pq x (p + r2)), which is 0(p2q + pqr2). Similarly, the complexity of 

GreedyAllocation" is 0(pq x (p + qr2)), which is 0(p2q + pq2r2). Finally, the com- 

plexity of GreedyAllocation' is 0(pq2 x (p + qr2)), which is 0(p2q2 +pq3r2). 

An optimization is possible for the greedy allocation procedures that can reduce 

the absolute cost of the procedures but does not affect the worst case complexity 

measures derived above. PotentialProcs in the procedures need not be AllProcs. 

In the single copy case, for example, allocations need to be considered only to 

processors that already have partitions allocated to them or their neighbors. As 

a special case, the first partition should be allocated immediately to the processor 

where the computation will begin (which is assumed to be the same as the processor 

where the final result will be demanded). When partitions can have multiple copies, 

this gets a bit more involved but the general idea is the same. Notice that this 

optimization does not reduce the size of PotentialProcs in the worst case, which is 
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4.1.4    Not Locally Optimal 

Once allocated to a processor, a partition is not re-allocated to another processor 

when allocations of other partitions are being considered. This is done regardless of 

any new communication requirements that the later partitions may expose. There- 

fore, it is not surprising that greedy allocation is not guaranteed to produce a locally 

optimal allocation. An example of greedy allocation that does not produce a locally 

optimal solution is given in appendix C. Of course, if the solution is not locally 

optimal, it is also not globally optimal. 

4.2     Local Minimization 

This section contains a specification of the algorithm, a description of the algorithm, 

a discussion of its complexity, and an example to show that the allocations produced 

are not necessarily globally optimal. 

4.2.1    Specifications 

Inputs 

1. P: a set of partitions of the database. 

2. C: a function that takes two partitions Pi and P2 and returns a tuple of 

the form < data,number > where data is the amount of data (in bytes) and 

number is the number of messages sent from partition Pi to partition P2. data 

and number are expected values in a probabilistic sense. 

3. PI: a function that takes a partition and returns the set of processing intervals 

associated with the partition. 

4. Multiprocessor constants: These are Üfi, K2, and K3 used to compute com- 

munication cost as given by equations 5 and 6. 
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5. Topology: This includes (1) distances between all pairs of processors and (2) 

lists of neighbors of each processor. 

6. An allocation: A many-to-one mapping from the set of partitions to the set 

of processors. 

7. Number of copies for each partition 

Outputs 

1. Allocation: A many-to-one mapping from the set of partitions to the set of 

processors. 

4.2.2    Algorithm 

Notice from the specifications given above that the number of copies for each par- 

tition is already fixed by the greedy allocation procedure. In fact, the number of 

copies is an input to the procedure. 

The code for the local minimization procedure LocalMinimization is given in 

figure 33. The idea is that there is a set of iterations specified by the outer While 

loop. In each iteration, every partition is considered in turn (by the outer one of 

the two nested For loops. The best allocation is picked for each partition among 

the processor it is currently currently allocated to and its neighbors—six in the case 

of FAIM-1. This is done in the inner For loop. At the conclusion of the inner For 

loop, the partition is allocated to the best processor among the ones considered. 

If this is different from the processor that the partition was allocated to, then the 

boolean variable Changed? is set to true. Therefore, Changed? gets set to true 

if one or more partitions get reallocated to a neighboring processor. The While 

loop terminates when Changed? is false, or equivalently when no partitions were 

reallocated in the previous iteration of the While loop. 
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Procedure LocalMinimization() 
begin 

Changed? <— true; 
While Changed? = true do begin 

Changed? *— nil; 
For all Partition £ SetOf Partitions do begin 

CurrProc <— Processor {Partition); 
BestCost <— Cost; 
BestProc <— CurrProc; 
Deallocate Partition from CurrProc; 
For all Processor € Neighbor(CurrProc) do begin 

Allocate Partition to Processor; 
TempCost *— Cost(Allocation); 
If TempCost < BestCost then begin 

BestCost <— TempCost; 
BestProc <— Processor 

end; /* If */ 
Deallocate Partition from Processor 

end; /* For */ 
If BestProc ^ CurrProc then begin 

Allocate Partition to BestProc; 
Changed? «— true 

end /* If */ 
end /* For */ 

end /* While */ 
end; /* LocalMinimization */ 

Figure 33: Procedure LocalMinimization 
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Algorithm 

Complexity 

Single 
Copies 

Multiple 
Copies 

LocalMinimization P  2     2 
0(qK(p +pO) 

P 2       2 
0(q (p +pqr )) 

One iteration of 
While loop in 
LocalMinimization 

2      2 
0(p +pr ) 

2       2 
0(p +pqr ) 

p = Number of partitions 

q = Number of processors 

r = Number of subgoals at compile-time 

Table 5: Complexity Results for Local Minimization 

4.2.3    Complexity 

Table 5 summarizes the complexity results for Local Minimization. Further expla- 

nation including the basis for the results is given below. 

In the worst case, LocalMinimization may consider all possible allocations. These 

are exponential in number. To be precise, there are qp allocations, where p is the 

number of partitions and q is.the number of processors. Notice that after each 

iteration of the While loop, there is always a complete allocation that is the lowest 

cost allocation found so far. As it turns out, each iteration takes polynomial time 

(see below). Therefore, if the algorithm has exceeded some time limit, it can be 

terminated between iterations of the While loop and the latest allocation can be 

used. 

The time taken for each iteration of the While loop can be analyzed as follows. 
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Each partition is allocated (and deallocated) 7 times in each iteration of the While 

loop. The cost for updating the cost function for each allocation/deallocation is 

0(p + r2) when single copies of partitions are used and it is 0(p + qr2) when 

multiple copies of partitions are allowed (see previous discussion on complexity 

of Greedy Allocation). Since there are p partitions, the total times taken for an 

iteration are 0(p2 + pr2) and 0(p2 + pqr2) for the single copy and multiple copy 

cases respectively. 

4.2.4    Not Globally Optimal 

Even if the procedure LocalMinimization is executed till it terminates (as opposed to 

just a few rounds), there is no guarantee that the locally optimal allocation is going 

to be globally optimal as well. Appendix D contains an example of an allocation 

produced by LocalMinimization that is not globally optimal. 

4.3    Experimental Results 

PM, the parallel execution model, and the resource allocation algorithms have been 

implemented in Zetalisp on the Symbolics 3600 series of Lisp Machines [44].l PM 

and the simulated version of PM were implemented on top of a high-level functional 

simulation of FAIM-1 using the event-driven simulator Helios [24]. The parallel 

interpreters were created by modifying the sequential backward-chaining interpreter 

in MRS [54], a logic programming system. 
Several examples have been tried using this implementation. One of these will 

be described in detail to demonstrate the utility of PM and the resource alloca- 

tion techniques developed in this thesis. The example logic program describes the 

structure and behavior of a digital device—a 4-bit adder. In addition, a set of facts 

describes the values of all the inputs. The goal given to the backward-chaining 

deduction engine is to determine the value of a particular output. This problem 

is similar, but not identical, to a part of the problem of test-generation [59]:  the 

Zetalisp and Symbolics are trademarks of Symbolics, Inc. 
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determination of values for a set of inputs that would force an output (or some 

other intermediate port) to a particular value. 

Detailed information about the example is given in appendix E. In particular, 

the appendix contains the complete database for the example, the goal given to 

the backward-chaining engine, the partitioning of the database, the FAIM-1 mul- 

tiprocessor configuration used, other multiprocessor parameters, and finally the 

allocations generated by the allocator. Two allocations are shown: the first for the 

single copy case and the second for the multiple copy case. 

Figure 34 shows the parallelism profile for the application. The profile gives 

the number of parallel inferences versus time assuming unbounded processors and 

memory, and instantaneous communication. The figure shows two curves: the 

curve marked "AOP" shows the profile when and-parallelism, or-parallelism, and 

pipelining are exploited and the curve marked "OP" shows the profile when only 

or-parallelism and pipelining are exploited. The average and maximum parallelism 

for the "AOP" case are 30.371 and 106 respectively. The same numbers for the 

"OP" case are 12.745 and 37 respectively. The numbers demonstrate the advantage 

of exploiting and-parallelism. 

The same curves also give unreachable lower bounds on the time to complete the 

computation. The lower bound is simply the maximum time value for the curve. 

In any real multiprocessor, the completion time will be greater than this lower 

bound because it will have only a limited number of processors (as opposed to an 

unlimited number assumed here) and non-zero communication delays (as opposed 

to instantaneous communication assumed here). The lower bound for the "AOP" 

case is 35 logical inference time units and the lower bound for the "OP" case is 

51 logical inference time units. Again, these numbers indicate the advantage of 

exploiting and-parallelism. 

The curves also give the sequential time for computation. The sequential time 

is simply the area under the curve. The sequential time for the "AOP" case is 

1063 logical inference time units and the sequential time for the "OP" case is 650 

logical inference time units. Notice that the sequential time for the "OP" case is 

lower than the sequential time for the "AOP" case. Therefore, if only one processor 
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is available, it is more efficient to exploit less parallelism conceptually. Of course, 

it could have been the other way around also as pointed out in chapter 2. The 

corresponding unreachable upper bounds on speedups for "AOP" and "OP" can 

be computed by dividing the sequential time by the unreachable lower bound on 

time taken in the parallel case. These upper bounds are 1063/35 (= 30.371) and 

650/51 (= 12.745) "AOP" and "OP" respectively. Notice that these unreachable 

speedup numbers are the same as the average parallelism numbers given earlier (as 

they should be). 

Earlier experiments with smaller examples had indicated that greedy allocation 

by itself either produced locally optimal allocations or allocations that were very 

close to locally optimal. The experiments described for the adder example use 

greedy allocation only; no local minimization was used. 

A possible explanation for greedy allocation turning out to be so successful 

is given now. The only hand-designed situations where greedy allocation per- 

forms poorly are cases where the communication and processing requirements for a 

dataflow* graph are highly non-uniform (see appendix C for an example). In the 

practical examples looked at, this was not the case (i.e., processing and commu- 

nication requirements were fairly uniform). In particular, for the adder example 

being considered here, all communication arcs in a conjunct graph carry a single 

message, if they carry one at all. This follows directly from the fact that the output 

of a hardware component is a function of the inputs. In addition, the amount of 

processing associated with nodes in a conjunct graph is fairly uniform. The number 

of rules that apply to reducing any particular goal ranges from two to four only. 

When GreedyAllocation was used to make a single copy allocation, the time 

taken and speedup were found to be 215.531 logical inference time units and 4.932 

respectively. 

While using the single-copy allocation generated by the allocator program, it was 

noticed that certain partitions were bottlenecks in the computation. The first clue 

came from monitoring the "busy-ness" of various processors during the parallel 

computation.2    The second clue came from looking at the parallelism profile of 

2This weis done by using a color instrumentation tool in Helios, the event-driven simulator.  A 
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single partitions.   Some partitions came out with very high parallelism for some 

time intervals indicating that they might be bottlenecks. 

Given the evidence of a bottleneck due to single copies, it was decided to allow 

multiple copies in the allocation. The procedure GreedyAllocation" was used alone 

without any local minimization. If local minimization were used, it would only 

improve on this allocation. It turns out that the time taken and speedup for the 

allocation generated were 60.254 logical inference time units and 17.642 respectively. 

Compared to the single copy case, the speedup is a multiple of 3.577 higher. 

A random allocator was used to generate an allocation using the same number 

of copies for each partition as that used by GreedyAllocation". Time taken and 

speedup were 215.531 logical inference time units and 17.015 respectively. 

GreedyAllocation" is not much better than a random allocator in this case be- 

cause communication is relatively cheap in the FAIM-1 multiprocessor configuration 

considered. However, there are at least two cases where a random allocation can 

perform arbitrarily worse than a greedy allocation. Both of these two cases have 

the characteristic that the average delays in the random allocation case are arbi- 

trarily larger than the average delays expected in the greedy allocation case. The 

first case is one in which there axe a larger number of processors. A larger number 

of processors increases the average distance between a random pair of processors. 

This increases the expected distance for communication using a random allocation. 

However, greedy allocation does not use more processors unless that decreases the 

cost function. In other words, adding more processors does not necessarily mean 

that they will be used by greedy allocation. The second case is one in which dif- 

ferent communication hardware is used and communication is higher even for the 

same distances as before. This could happen if a different multiprocessor were used 

that did not have a high degree of hardware support for communication (as it is for 

FAIM-1). 
Now, it remains to be seen what the effect of higher delays is on random allo- 

cations. Figure 35 illustrates this effect. The figure plots speedup versus log (base 

color spectrum from blue to red was used to indicate the "busy-ness" of processors represented by 
icons, with red being used to indicate the busy extreme and blue being used to indicate the idle 

extreme. 
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2) of delay (expressed as a multiple of the normal delay expected for the FAIM-1 

configuration) for a set of experiments performed using the random allocation men- 

tioned above. Delays to the left of the speedup axis are sub-normal delays (down 

to 2~10 times the normal delay) and delays to the right are super-normal delays 

(up to 210 times the normal delay). The relative flatness of the curve to the left 

of the speedup axis demonstrates that communication is not a bottleneck in this 

case. However, as communication delays are increased beyond the normal delays, 

the speedup for random allocation drops to zero asymptotically. Let us see how 

a greedy allocation might perform in the two cases in which delays are increased. 

When the number of processors is increased, the speedup expected from greedy al- 

location should be as good or better than 17.642 (the speedup for the configuration 

used for the greedy allocation experiment mentioned earlier). For the random allo- 

cation case, a delay that is 4 times normal drops speedup to about 12.5. Given the 

topology of FAIM-1 and the multiprocessor communication constants, it turns out 

that this delay would be expected when the number of processors is increased to 

about 4000. Let us look at the other case now. If communication delays are higher 

overall for the multiprocessor, then communication cost will overwhelm processor 

multiplexing cost beyond a certain point. Therefore, all computation will get allo- 

cated to a single processor and speedup will be 1. In the random allocation case, 

however, it could be arbitrarily close to zero. As a somewhat less extreme case, a 

delay of 128 times the normal FAIM-1 delay drops the speedup below 1 (see figure). 

This can easily happen if the multiprocessor does not have the type of specialized 

communication support that FAIM-1 has. 

On a different note, it was mentioned in section 3.1.4 that a possible improvement 

in the communication cost might be to reduce it by the degree of communication 

parallelism. There is some evidence that this might be true. A reasonable measure 

of the degree of communication parallelism for a computation might be the average 

parallelism given by its parallelism profile (assuming that the degree of communi- 

cation parallelism is the same as the degree of processing parallelism). In the case 

of the adder example, this is 30.371. An allocation was produced by reducing the 
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communication parameters (üfj, K2, and K3 in equation 1, section 3.1.4) by a fac- 

tor of 32 (closest power of 2 to 30.371). This allocation produced by the procedure 

GreedyAUocation" gives an average speedup of 18.250 as opposed to 17.642 with the 

normal communication parameters. The speedup did improve by taking commu- 

nication parallelism into consideration. However, this single data point should be 

considered as suggestive evidence only. Conclusive proof can only be provided by 

further research. Of course, there may be more accurate methods to take commu- 

nication parallelism into account and the associated speedup improvement may be 

even greater. 

4.4    Related Work 

4.4.1 Theoretical work 

Previous theoretical work on scheduling (or allocation) for multiprocessors [37,39] is 

not directly applicable here. There are many variations on the scheduling problem 

but none of them include communication cost in a general way. There are many 

interesting results, however, that may be good starting points for extensions that 

consider communication. Extensions to approximation results such as Graham's 

[29] would be tremendously useful. Another extension that would be required to 

attack the scheduling problem in this thesis would be the inclusion of memory 

constraints that limit the number of copies of certain pieces of the database (or 

code in procedural languages). 

4.4.2 Local Search 

The local minimization algorithm discussed in this chapter is an application of a 

general technique called Local Search in the optimization literature (see book by 

Papadimitriou and Steiglitz [51], for example). The general algorithm is described 

in the book by Papadimitriou and Steiglitz as follows: 

Given an instance (F,c) of an optimization problem, where F is the feasible set 
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and c is the cost mapping, we choose a neighborhood 

N : F —► 2F 

which is searched at point t £ F for improvements by the subroutine 

. [  any s € N(t) with c(s) < c(t) if such an s exists 
lmprove(f) = < 

y "no" otherwise 

The book contains many examples of local search algorithms applied to the 

travelling salesman problem and the uniform graph partitioning problem among 

others. In addition, the book identifies some general issues in the development of 

such algorithms. In many cases, local search has turned out to be a powerful opti- 

mization technique and is often the best available. Unfortunately, the development 

of local search algorithms remains largely an art and the demonstrations of utility 

are empirical in nature. 

Recall that in this thesis, the local minimization algorithm turned out not to be 

very important. The starting point for local minimization (i.e., the result of greedy 

allocation) was already quite good. 

4.4.3    Compile-time Allocation for Dataflow 

4.4.3.1    DDM2 from University of Utah 

A paper by Martha Chamberlain and Alan Davis [11] describes what was probably 

the first attempt at static allocation of dataflow programs. The target machine was 

called DDM2 (a successor to DDM1) and a single processor version was operational 

in 1979. Timing measurements taken from the single processor version were then 

used to emulate a multiple processor version whose topology was a tree. 

The input to the allocator is a type of dataflow graph called DDN (Data Driven 

Net). The overall goal of the allocator was to massage this graph into a tree- 

structured shape preserving as much of the locality as possible. Function-preserving 

graph transformations such as replicating nodes and inserting dummy nodes for 

extra synchronization were used. 
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The overall structure of the allocator consists of three top-level steps. First, 

the DDN is converted to a TANTA graph (or Two-terminal, Acyclic graph with 

No Transitive Arcs). Since DDN's are already two-terminal, this phase consists of 

encapsulating cyclic iteration structures into single complex nodes and removing 

transitive arcs. The second top level step is the conversion of TANTA graphs to SP 

graphs (or series-parallel graphs). Different methods to do this lead to minimum 

work or minimum time (i.e., minimum critical path). The third and final step is to 

convert the SP graph to a tree by a series of folding operations. 

In comparison with the allocator presented in this thesis, a lot of processing in 

the DDM2 allocator is geared specifically towards the special-purpose tree topology. 

The allocator in this thesis is not designed for any particular topology. Another 

point of difference is that the DDM2 allocator makes the simple assumption of 

equal computation cost for all nodes and single token communication along all arcs. 

A considerable amount of theory was developed in this thesis (in chapter 3) to 

generate more accurate predictive models of communication and processing. An- 

other difference is in the area of exploiting the tradeoff between parallelism and 

communication cost. The allocator in this thesis attempts to make this tradeoff 

systematically based on the separate communication cost and processor multiplex- 

ing cost components of the cost function. Program fragments that produce large 

amounts of communication delay relative to the amount of parallelism exposed are 

allocated to the same processor. In the extreme, the entire program may get allo- 

cated to the same processor even when more processors are available. The DDM2 

allocator will expose all concurrency if there are sufficient numbers of processors 

available. 

4.4.3.2    Hughes Dataflow Multiprocessor 

Michael Campbell [10] describes another method for the compile-time allocation of 

dataflow programs to the Hughes Dataflow Multiprocessor. The multiprocessor has 

a bussed cube interconnection network. However, the allocation algorithms are not 

designed to work with just that topology. 

Allocation is based on a heuristic cost function that is a weighted sum of a 
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communication cost and processing cost. Communication cost associated with the 

allocation of a single node in the dataflow graph is the sum of the distances of arcs 

connected with the node; distance is simply the number of hops from the processor 

associated with the source node of an arc to the processor associated with the 

destination node of the arc. No consideration is given to the size of the data in 

each token transmitted along an arc or the number of tokens. The processing cost 

is computed by first finding the transitive closure of the graph. Potentially parallel 

nodes are those that do not have an arc connecting them in the transitive closure. 

The processing cost associated with the allocation of a certain node to a processor 

is computed from the number of potentially parallel nodes allocated to the same 

processor. Each node is assumed to take the same computation time and no special 

consideration is given to the multiple invocation of a node. 

The differences from this thesis are the following: (1) A much simpler model of 

communication is assumed here. (2) A much simpler model of processing is assumed. 

(3) Potentially parallel computations are found by computing the transitive closure 

of the graph. The allocator in this thesis performs an abstract simulation with 

probabilistic analysis to find parallel computations. (4) A node may be allocated 

to a single processor only. We allow multiple copies. 

4.4.3.3    Vivek Sarkar's thesis 

In his thesis Partitioning and Scheduling Parallel Programs for Execution on Multi- 

processors [55], Vivek Sarkar describes another approach to compile-time allocation 

for dataflow programs. This approach is interesting because it takes completion 

time as the cost function as opposed to a combination of communication and pro- 

cessing. Some differences from this thesis are described below. First, it assumes 

that each processor has sufficient memory to execute the entire program unlike the 

approach in this thesis. Second, profile information is used for estimates as opposed 

to probabilistic estimates in this thesis. Finally, it is claimed that the approach is 

applicable to topologies in which there could be delays that are a function of the 

distance between processors. However, all experiments reported assume delays that 

are independent of distance. 
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4.4.4    Kemal Oflazer's Thesis on Partitioning of Production 

Systems 

Kemal Oflazer discusses the partitioning problem for Production Systems (or Rule- 

Based Systems), specifically 0PS5 [23], in his thesis Partitioning in Parallel Process- 

ing of Production Systems [50] and an earlier paper [49]. This partitioning problem 

is described as the compile-time allocation of productions (or rules) to processors 

in such a way that the total time of execution is minimized. 

A production system interpreter repeatedly executes a recognize-act cycle. This 

cycle consists of 3 phases—Match, Conflict-Resolution, and Act. The Match phase 

finds all productions that may be fired, the Conflict-Resolution phase picks a single 

production to be fired, and the Act phase performs the changes to the database 

mandated by the chosen production. Note that the Conflict-Resolution phase is a 

synchronization point during every cycle. 

In Oflazer's parallel processor organization for partitioning, a set of processors 

contains mutually exclusive and exhaustive subsets of the productions in the sys- 

tems. Each processor also contains the state associated with its subset of the pro- 

ductions. The goal of each processor is to make any changes to its state mandated 

by the previous Act phase, find the matching productions, and report them to some 

central processing location. The central processor performs the Conflict Resolution 

phase and identifies the state changes mandated by the chosen production to the 

relevant processors. Since most of the processing in production systems takes place 

during the Match phase, Oflazer's model ignores the processing cost during the 

Conflict-Resolution phase and the Act phase. In addition, communication cost be- 

tween the parallel processors and the central processing location is ignored because 

it is a small amount of data. 

This work is different from our model in the following ways. First, the presence 

of a synchronization point during every interpreter cycle makes it a very different 

type of computation. There are no such synchronization points in dataflow* graphs. 

Second, communication cost is not a factor in Oflazer's work whereas it is a central 

focus of the work in this thesis.  Third, Oflazer takes the estimates for processing 
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costs from previous executions of the same production system. In our case, estimates 

are produced by probabilistic analysis. 

4.4.5 Compile-time Allocation of Actor Languages 

Bill Athas has recently completed a thesis on compile-time allocation for a concur- 

rent, object-oriented programming language called Cantor [4]. Unfortunately, the 

thesis was not available in time to make a detailed comparison. 

4.4.6 Run-time Allocation 

A lot of research has been done in the area of run-time allocation for many different 

types of computations. It is not possible to discuss all the work here but some 

interesting pieces of work are mentioned below. As mentioned earlier in chapter 1, 

run-time allocation has the disadvantage that the overhead of decision-making must 

be paid at run-time. However, if the behavior of the program is highly dynamic 

and is hard to predict at compile-time, then run-time allocation may be the best 

approach. 

Smith [66] has presented a protocol called Contract Net to dynamically distribute 

tasks among processors in a distributed system. Each task is distributed using 

an Announcement-Bid-Award sequence. A task to be distributed is announced as 

being available, processors may bid to do the task, and the announcing processor 

may then award the contract to one of the processors. The idea was to propose 

a more flexible framework than some other rigid frameworks like remote procedure 

calls [47], for example. 
Malone et. al [42] have proposed an interesting specialization of the Contract 

Net (called Enterprise) and showed some good connections to scheduling theory 

results. Singh and Genesereth [61] proposed another specialization of the Contract 

Net (called Variable Supply Model) that was shown to be an efficient and flexible 

approach to distributing or-parallel tasks on a broadcast network. 

Hornig [36] has designed a distributed reduction-style interpreter for a functional 
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language he designed called Stardust. An interesting feature of this work is that user- 

defined functions are annotated with time estimates provided by the user. Time 

estimates can be arbitrary functions of the arguments to the function. Several 

examples were presented in which time estimates can be provided reasonably. Such 

time estimates could be useful for compile-time allocation as well. 

Haridi and Ciepielewski [33] have described a token-pool mechanism to distribute 

or-parallel logic programs. The idea is that or-parallel computations are encapsu- 

lated in tokens. These tokens may be placed in the pool as they are generated 

and picked up by other processors. The difference from the Contract Net is that 

computations are not handed over directly from the spawning processor to the con- 

tracting processor. The token pool acts as an intermediary between the spawning 

processor and the contracting processor. However, the token pool seems to be a 

passive entity. Therefore, the spawning processor does not have any control over 

which contracting processor gets selected for any spawned computation. 

Hermenegildo [34] and some others have provided an interesting twist to this 

idea of the token pool. The idea is that computations that can be spawned off to 

remote processors are simply kept in local storage at some well-known location. Re- 

mote processors can retrieve these parallel computations completely independently 

without any intervention of the local processor. Some special hardware may be 

needed for this mechanism but it has the advantage that the busy processors do not 

have to pay the overhead of distribution. It is the idle processors that must spend 

some time searching for some parallel computations to start working on. 

4.4.7    Programmed Allocation 

Shapiro [58] has described a notation for programmers to specify their own allo- 

cations for Concurrent Prolog programs [57]. The notation is based on the turtle 

notation of LOGO programs [52] and is very elegant. However, the programmer 

must have a very good idea of the structure of the program to make use of it. In 

cases where the dynamic behavior of the program is not well-known by the user, 

user-specified allocations are not likely to perform well. 
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4.5     Conclusions 

This chapter contained the description of a compile-time allocation strategy based 

on a cost function that is not specific to any particular domain or multiprocessor. 

It was shown that the algorithms involved are tractable (i.e., they have polynomial 

worst-case time complexity). For the 4-bit adder example, this allocation strategy 

produced speedups that were more than half an unreachable upper bound. In the 

FAIM-1 configuration considered, communication costs are not high; therefore, even 

a random allocation does quite well (though not as well as greedy allocation). In 

general, it is possible that random allocations may perform arbitrarily worse than 

the allocation strategy presented here. 



Chapter 5 

Conclusions 

5.1     Summary of Key Ideas 

In this thesis, we presented solutions to two problems: (1) the design of a parallel 

execution model for backward-chaining deductions and (2) the allocation of the 

resulting parallel computations to an interesting class of multiprocessors. 

The target class of multiprocessors has the following properties: (1) there are an 

arbitrary number of MIMD processors; (2) each processor has some local memory 

but there is no global memory; (3) processors can communicate only by sending 

messages to each other; (4) message delay is a function of the amount of data in the 

message and the distance between source and destination; and (5) each processor 

can perform backward-chaining deductions based on the subset of the program that 

it contains. 

PM, the parallel execution model described in chapter 2, exploits more paral- 

lelism than other execution models that use data-driven control and the same target 

class of multiprocessors. In particular, PM exploits or-parallelism, and-paralhlism 

and pipelining. The extra parallelism can be an important advantage in a situa- 

tion where a large number of processors are available. Data-driven control leads to 

minimal synchronization overhead and means that the inherent parallelism can be 

fully exploited.  The chapter included a correctness theorem that stated that the 
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set of solutions produced by PM is identical to the set of solutions produced by a 

Prolog interpreter. PM does not assume that the entire program can be stored in 

each processor's local memory. Therefore, larger programs can be run compared to 

the case in which a copy of the entire program is required in each processor's local 

memory. 

We described a compile-time allocation strategy for PM in chapters 3 and 4. In 

order to compare different allocations, the strategy uses a cost function (described 

in chapter 3) that applies to any application and multiprocessor (in the target mul- 

tiprocessor class). The cost function attempts to capture intuitive notions of the 

quality of allocations. The completion time of the computation, assuming zero com- 

putation delays and infinite processors, is the completion time for the associated 

parallelism profile. The non-zero delays and sequentialization of parallel computa- 

tion associated with a realistic multiprocessor will increase this completion time. 

The cost function is denned to be an upper bound on this additional delay assuming 

that the effects of non-zero communication delays and sequentialization of parallel 

computation (due to a finite number of processors) are independent and, therefore, 

additive. The upper bound on the extra delay due to non-zero communication is 

given by the sum of all communication delays. This is called the communication 

cost of the computation. The upper bound on the extra delay due to sequentializa- 

tion of parallel computation is called the processor multiplexing cost. The overall 

cost is the sum of the communication cost and the processor multiplexing cost. 

An important feature of this cost function is that it can be efficiently computed 

and recomputed (for small changes in the allocation). Algorithms were presented 

for this computation and recomputation. Unfortunately, the algorithms require 

certain restrictions that PMdoes not require. First, the type of backward-chaining 

deduction is restricted. In particular, no recursive clauses are allowed, unit clauses 

must be ground, and certain probabilistic uniformity and independence assumptions 

must apply. Second, a partitioning of the database is assumed to be given. 

Some of the probabilistic techniques used in the cost computation algorithms 

should be useful in other contexts as well. A couple of examples are given below. 

First, the Communication Estimation algorithm computes the expected amount of 
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communication between each pair of partitions. Since the trade-off between com- 

munication and parallelism seems to be so fundamental for the allocation problem, 

estimating communication should be useful for other allocation strategies. Second, 

computing the parallelism profile is a side-effect of the processor multiplexing cost 

computation. Parallelism profiles have been used for allocation strategies other than 

the one described here [55]. In addition, they are used sometimes simply for the 

purpose of estimating the amount of parallelism inherent in an application. 

In chapter 4, we described a search strategy for finding a satisfactory allocation in 

the space of possible allocations. The search strategy consisted of a greedy allocation 

phase followed by a local minimization phase. Greedy allocation allocates partitions 

of the database to processors one at a time. A partition is allocated to the lowest 

cost processor without re-allocating any partitions that were allocated previously. 

The local minimization phase consists of a sequence of cost-reducing re-allocations 

of partitions to neighboring processors till a local minimum is reached. It was shown 

that both greedy allocation and each round of local minimization have worst-case 

time complexities that are polynomial. 

Experiments indicate that greedy allocation alone produces quite satisfactory 

answers. For the 4-bit digital adder example that was tried on a simulation of the 

FAIM-1 multiprocessor, the speedup achieved by using the greedy allocation was 

more than half of an unreachable upper bound. Also, the speedup achieved was 

somewhat better than that achieved by using random allocation. More analysis re- 

vealed that random allocation works so well because this particular example is not 

communication intensive at all. There are at least two cases where the difference in 

performance between the allocation strategy advocated and the random allocation 

strategy can be expected to be significant. First, a higher number of processors will 

increase the average distance and, therefore, the average delay for the random allo- 

cation case. However, average distances need not increase at all for the allocation 

strategy advocated when more processors are used. Second, higher communication 

constants associated with a different multiprocessor with less communication sup- 

port can cause the speedup to be arbitrarily close to zero. However, the allocation 

strategy advocated here will allocate all computation to a single processor (with a 
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speedup of 1) when communication cost overwhelms processor multiplexing cost. 

5.2    Directions for Future Research 

Two versions of the greedy allocation algorithm were described in chapter 4— 

Greedy Allocation and GreedyAllocation"'. However, experiments were conducted 

only with Greedy Allocation". It is quite possible that Greedy Allocation' will lead to 

better allocations since the number of multiple copies is chosen in a less arbitrary 

manner than in Greedy Allocation". The disadvantage of using GreedyAllocation' is 

that it has a higher time complexity. 

A constraint that was kept in mind while designing the current cost function 

was to make recomputation efficient when small changes are made to the allocation. 

However, as the experiments indicate, greedy allocation by itself produced quite 

reasonable allocations without using local minimization at all. Since recomputation 

is useful only for local minimization, there is the possibility now of using a different 

cost function that is not as pessimistic as the current cost function and one that is 

not necessarily designed for efficient recomputation. A more accurate cost function 

of this type has the potential of improving the quality of the greedy allocation 

algorithm. 
At present, the allocation techniques do not apply to recursive cases. If arbitrary 

recursions are allowed, it becomes undecidable to predict the amount of processing 

and communication required for a parallel computation.1 Therefore, good alloca- 

tion decisions are unlikely. However, it may be possible to reason automatically 

about restricted recursive cases. Even in cases where completely automatic alloca- 

tion is not possible, users may provide information about parallel computation and 

communication to make reasonable allocation decisions possible. 

In many Artificial Intelligence problems, a single solution is required for the 

problem at hand. It should be possible to extend PM to kill off redundant processes 

when the first solution has been found. It may be harder to extend the allocation 

techniques to reason about the modified parallel execution model.   On a related 

lrrhis follows directly from the halting problem. 



5.2.  DIRECTIONS FOR FUTURE RESEARCH 155 

issue, PM should be modified to kill off processes associated with sibling and-nodes 

when no solution is found for any one of the and-nodes. 

Over the years, researchers have developed compilation techniques for Prolog 

that make it execute at comparable speeds with other programming languages for 

comparable problems [73,72]. More attention should be directed towards applying 

this compilation technology, perhaps with extensions, to parallel execution models 

like PM. 

Although backward-chaining deduction has been found to be very useful for a 

wide range of problems, other types of deduction are more natural for certain ap- 

plications. For example, simulation is better done with forward-chaining deduction 

[60] and planning problems are better handled with Residue [21]. Techniques for 

exposing the parallelism in these types of deduction will be needed if the associated 

applications are to be speeded up. 

The allocation techniques described in this thesis were directed towards Horn 

clause databases without any additional annotations. In the literature, this is called 

the implicit parallelism case for logic programming in contrast to logic programming 

languages that require explicit annotations to express producer-consumer relation- 

ships between processes. Explicitly parallel logic programming languages include 

Concurrent Prolog [57], PARLOG [30], and Guarded Horn Clauses (GHC) [71]. The 

extent to which the allocation techniques in this thesis are applicable to these lan- 

guages remains to be seen. Going even further, the applicability of the allocation 

techniques to other programming paradigms like object-oriented languages (e.g., 

Actors [1]) and Lisp-based languages (e.g., Qlisp [26] and Multilisp [31,32]) should 

be investigated. 

As mentioned earlier, compile-time allocation works best when good estimates 

can be made at compile-time about run-time program behavior. If good compile- 

time predictions can be made for some parts of the program and not for others, 

it may make sense to use a hybrid strategy using both compile-time and run-time 

allocation. A hybrid strategy may also include some user-specified allocations when 

the user already knows how to allocate a piece of the computation exceptionally 

well. 
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Appendix A 

Partial Order Algorithm 

This algorithm describes how to pick a partial order for a conjunctive goal. In 

particular, the partial order is represented by a directed, acyclic graph of nodes 

representing the conjuncts. 

On invoking a rule in backward-chaining, the antecedents of the rule become a 

new conjunctive subgoal that the inference engine may try to prove. Assume that 

appropriate bindings, resulting from the unification of the goal with the consequent 

of the rule, have been plugged into the antecedents. 

A.l    Definitions 

Let Ci through C„ be the antecedents of the rule in order from left to right.  Let 

CL be the ordered set of the antecedents of the rule. 

CL =< Ci, Ci,..., Cn > 

The function v is denned to take a literal as argument and return the set of 

variables in the literal. For example, 

v(p(x,y,c)) = {x,r} 
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The function vl is defined to take an ordered set of literals and return the set of 

variables in the literals. 
n 

vl(<C1,C2,...,Cn>) = {Jv(Ci) 

For example, 

vl(< p(X, Y, cl),q(Y, Z, c2) >) = {X, Y, Z} 

Let d(Ci,Cj) be true if and only if there is a directed arc between the corre- 

sponding nodes in the conjunct graph. 

As described in chapter 2, PM allows conjuncts to be solved in parallel only 

if previously solved conjuncts have already bound any shared variables that they 

may have. Let us call this constraint the shared-variable constraint. Restating the 

constraint, a single conjunct must first bind any given variable in vl(CL), where CL 

is the ordered set of conjuncts, before other conjuncts that share the same variable 

can be solved. This distinguished conjunct is called the generator conjunct for the 

variable in question. Let g(V, d) be true if and only if C* is the generator conjunct 

of the variable V. 

A.2     Assumption 

No assertions (i.e., unit clauses in a horn clause database) contain any variables. 

A.3    Algorithm 

Input: CL, an ordered set of conjuncts 

Output: A conjunct graph (i.e., a set of directed arcs between the conjuncts) such 

that (1) the partial order represented by the conjunct graph is a subset of the total 

order given in the input, (2) the partial order is the minimal one satisfying condition 

(1) and the shared-variable constraint, and (3) the conjunct graph is a minimal 

representation of the partial order. The term "minimal" is used with reference to 

the number of edges. 
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Condition (1) is chosen because it is expected that if the original total order 

is an efficient one, then subsets of it are also efficient. Condition (2) is chosen 

so that parallelism is maximized. Condition (3) is chosen so that communication 

requirements for PM are minimized. Reduced communication also translates into 

reduced computation at the nodes where the communication is directed. 

There are three parts of the algorithm and these are now described one by one. 

The first part of the algorithm picks a generator conjunct for each variable. For 

each variable in vl(CL), pick the leftmost conjunct, C„ in CL, such that the variable 

is contained in t>(C<). This conjunct is declared to be the generator of the variable 

in question. The complexity of this part of the algorithm is 0(n x k), where n is 

the number of conjuncts and k is the number of variables. 

This can be illustrated with an example. Consider the conjunctive goal 

p(X)Aq(Y)*s(X,Y) 

In this case, 

CL =< C\,Ci,C$ > 

Ci = P(X) 

C2 = q(Y) 

C3 = s(X,Y) 

vl(CL) = {X,Y} 

v(Ci) = {X} 

v(C2) = {Y} 

v(C3) = {X,Y} 

The generator conjuncts are described by g(X,Ci) and g(Y,C2). 

In the second part of the algorithm, directed arcs are introduced between the gen- 

erator conjuncts and other conjuncts. For each generator conjunct and each other 

conjunct that contains the variable generated by the generator, insert a directed arc 

between the corresponding nodes in the partial order graph. The complexity of this 

is Oiri2), where n is the number of conjuncts in CL. Again, this is best illustrated 
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by an example. Consider the same example that was just considered above for pick- 

ing the generator conjuncts. Since the generator conjunct for variable X is C\ (i.e., 

p(X)) and it is the case that C3 (i.e., s(X,Y)) contains the same variable, a directed 

arc, d(CuCz), is introduced. Similar reasoning leads to the only other directed 

arc d(C2,C3). At this point, the partial order described by the set of directed arcs 

satisfies the shared-variable constraint. However, tb?s may not be a minimal partial 

order satisfying the constraint as shown in a different example below. 

It is possible that the partial order generated by the algorithm so far is as given 

below: 

MCi.CaMCCa.Cs), <*(<?!, C3)} 

This would happen if the variables contained in Cx, C2, and C3 are {X}, {X, Y}, 

and {X,Y,Z} respectively. The arc d(Ci,C3) represents a redundant arc and can 

be removed while still maintaining the shared-variable constraint. Such arcs are 

called transitive arcs. An arc is a transitive arc if and only if there is a longer path 

between the end nodes of the arc. 

A paper by Aho, Garey, and Ullman [2] shows how to remove all these transitive 

arcs from a directed, acyclic graph in time 0(n3), where n is the number of vertices. 

The output of the algorithm is called the transitive reduction of the input graph. 

This transitive reduction algorithm is the third part of the partial order algorithm. 

The overall complexity of the partial order algorithm is obtained by adding the 

complexities of the three component procedures. The complexity is 0(n x k+n2+n3) 

or 0(n3), assuming that k is 0(n3). 

A.4    Another Example 

Consider the rule 

color(A,B,C,D,E):- 

next(A, B) A next(C, D) A next(A, C) A next(A, D) A 

next(B, C) A next(B, E) A next(C, E) A next(D, E) 
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This rule is part of the database used for a particular instance of the four color 

problem. A goal 
color(A,B,C,D,E) 

would generate the conjunctive subgoal 

next(A, B) A next(C, D) A nexi(A, C) A next(A, D) A 

nexi(B, C) A next(B, E) A nexi{C, E) A next(D, E) 

Now, nexi(A, B) is the generator for both A and B. Also, next(C, D) is the gener- 

ator for both C and D. Finally, next(B, E) is the generator for E. 

The partial order contains the following directed arcs: From next(A,B) to each 

member of {next(A,C),next{A,D),next(B,C),next(B,E)}, from next{C,D) to 

each member of {next(A,C),nexi(A,D),next(B,C),next(C,E),next(D,E)}, and 

from next(B,E) to each member of {next(C,E),next(D,E)}. 

There are no transitive arcs to remove in this case. 
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Appendix B 

Details of Procedure PMCCA-1 

The procedure PMCCA-1 is used to compute processor multiplexing cost for a 

single processor. Chapter 3 described this procedure but omitted details of the 

two procedures InsertPI and DeletePI. These procedures are given in this appendix 

in more detail (in sections B.2 and B.3). The procedures use the abstract data 

structure called PQ-list and its description is repeated in section B.l for the reader's 

convenience. 

Pseudo-Pascal code is given for the procedures, with comments being delimited 

by "/*" on the left and "*/" on the right. 

B.l    PQ-list Data Structure 

This abstract data structure has three associated abstract operations as described 

in chapter 3. 

1. InsertPQL(PQL, element, key): This inserts the element element into the 

PQ-list PQL in log time. In addition, the CLoad field of the element is set 

to the CLoad field of the previous element (in sorted order). If there is no 

previous element, then the field is set to zero. 

2. DelettPQL(PQL, element): This deletes element from PQL in log time. 
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3. EnumeratePQL(PQL, elementl, element2): Enumerates all elements in PQL 

in sorted order from the element elementl to the element elements. This is 

done in time linear in the number of elements enumerated. 

The list is doubly-linked to allow forward or backward traversal. The utility 

of backward pointers will become apparent later in the description of procedures 

InsertPI and DeletePI. 

B.2    Procedure InsertPI 

The InsertPI procedure is given in figure 36. 

The insert procedure uses InsertPQL to insert the two end-points of the process- 

ing intervals as two elements into the PQ-list. It also enumerates all the elements 

from the start element to the finish element and modifies their CLoad appropriately 

to reflect the change. In addition, PMC is changed as each element is considered. 

The correct PMC is available at the end of the procedure. 

B.3    Procedure DeletePI 

The DeletePI procedure is given in figure 37. 

The delete procedure enumerates all the elements from the start element to the 

finish element. It modifies the CLoad values of the elements appropriately. Also, 

PMC associated with the PQ-list is changed as each element is considered. The 

correct PMC is available at the end of the procedure. Moreover, the start and 

finish elements are deleted from the data-structure (using DeletePQL) when they 

are enumerated. 
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Procedure InsertPI(PI, PQList); 
begin 

HI *— PI.Processor Load; 
I* PMC =Current value of processor multiplexing cost */ 
StartElem *- InsertPQL(start(PI), start(PI).Time); 
FinishElem <- InsertPQL(finish(PI), finish(PI).Time); 
If StartElem.Prev ^ nil then begin 
/* The prev field is the previous element in sorted order. */ 

CLoadPrev *- StartElem.Prev.CLoad; 
CLoadPrevOld <- StartElem.Prev.CLoad; 
TimePrev <- StartElem.Prev.Time 

end 
else begin 

CLoadPrev <- 0; 
CLoadPrevOld <- 0; 
TimePrev <- 0 

end; 
For all Elem G EnumeratePQL( PQList, StartElem, FinishElem) do begin 

PMC <- PMC+ [max(0, CLoadPrev - 1) - max(0, CLoadPrevOld - l)]x 
(Elem.Time - TimePrev); 

CLoadPrevOld <- Elem.CLoad; 
If Elem j£ FinishElem then 

Elem.CLoad <- Elem.CLoad + HI; 
CLoadPrev «— Elem.CLoad; 
TimePrev <— Elem.Time 

end /* for */ 
end; /* InsertPI*/ 

Figure 36: Procedure InsertPI 
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Procedure DeletePI(Eleml, Elem2, PQList); 
begin 

HI *- PI .Processor Load; 
I* PMC =Current value of processor multiplexing cost */ 
If Eleml.Prev.CLoad ^ nil then begin 

CLoadPrev <- Eleml.Prev.CLoad; 
CLoadPrevOld *- Eleml.Prev.CLoad; 
TimePrev *- Eleml.P rev.Time 

end 
else begin 

CLoadPrev «- 0; 
CLoadPrevOld <- 0; 
TimePrev <- 0 

end; 
For all Elem € EnumeratePQL( PQList, Eleml, Elem2) do begin 

PMC <- PMC+ [max(0, CLoadPrev - 1) - max(0, CLoadPrevOld - l)]x 
(Elem.Time - TimePrev); 

CLoadPrevOld = Elem.CLoad; 
If Elem ^ Eleml then 

Elem.CLoad = Elem.CLoad - HI; 
CLoadPrev — Elem.CLoad; 
If Elem = Eleml or Elem = Eleml then 

DeletePQL(PQList, Elem); 
TimePrev <— Elem.Time; 

end /* for */ 
end; /* DeletePI*/ 

Figure 37: Procedure DeletePI 



Appendix C 

Greedy Allocation is not Locally 

Optimal 

This appendix presents an example where greedy allocation does not produce a 

locally optimal solution. Consider the dataflow* graph in figure 38 and the processor 

topology shown in figure 39. Assume that there is no processing overlap between 

nodes A or B with C. Also, let there be no overlap between nodes B or C with D. Let 

the amounts of communication between the node pairs A and B and separately A 

and C be very low and equal to each other. Also, let the amounts of communication 

between the node pairs B and D and separately C and D be very high and equal to 

each other. If the greedy allocation algorithm allocates the nodes in the topological 

order A, B, C, and then D, a possible allocation may be as given below: 

B—>1 

D—>1 

When B and C get allocated by the greedy allocation procedure, the only com- 

munication considered is from A to B and C. However, this is not necessarily the 
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D 

Figure 38: A Dataflow* Graph 

7 6 

Figure 39: A Processor Topology 
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locally optimal solution. If communication from B and C to D is high enough rela- 

tive to the communication from A to B and C, then it may reduce the cost function 

by moving C from processor 2 to 1. Although the processor multiplexing cost is 

increased, the effect due to reduction of communication cost may be greater. 
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Appendix D 

Local Minimization is not 

Globally Optimal 

This appendix presents an example where local minimization of an allocation does 

not produce a globally optimal solution. Consider the dataflow* graph in figure 40 

and the processor topology shown in figure 41. Assume that there is no processing 

overlap between node A with any of the nodes in the set {B, C, D, E}. Also, assume 

that there is no overlap between any of the nodes in the set {B, C, D, E} with node 

F. Let the amounts of communication from A with any node in the set {B, C, D, 

E} be equal and very low. Let the amounts of communication from any node in {B, 

C, D, E} with node F be equal and very large. Assume, in addition, that memory 

requirements dictate that at most one node may be allocated to a single processor. 

If the greedy allocation algorithm allocates nodes in the topological order A, B, C, 

D, E, and then F, a possible allocation may be as given below: 

B —>2 

C —+4 

D—>6 

171 
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Figure 40: A Dataflow* Graph 
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Figure 41: A Processor Topology 

The allocation produced by the greedy allocation procedure is already a locally 

optimal solution because any feasible local neighbor has a higher «-*•   ="""«• 

it is easy to see that this not necessarily the globally optimal solution. G.ven tha 

communication from nodes in the set {B, C, D. E} to F is high enough compared 

to the communication from A to the nodes in the set {B, 0, D, E}, «ben a lower 

cost solution is given below: 
F—+1 

B 

C 

2 

4 
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D—*6 

E—>8 

It is interesting to note that if the order chosen for greedy allocation had been 

reversed, this lower cost allocation would have been the one generated. 

Examples can also be generated that are locally optimal but not globally optimal 

and where the size of memory is not an issue. 
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Appendix E 

Adder Example 

E.l     Syntax and Notation 

Anything followed by ";'' on a line is a comment.  The syntax for facts and rules 

in MRS is different from the standard Prolog syntax.  Variables are symbols that 

begin with the character "$". A literal in Prolog as in 

<predicate>(<fieldl>,<field2>,...,<fieldn>) 

is written in MRS as 

(<predicate> <fieldl> <field2> ... <fieldn>). 

A rule in Prolog as in 

<goal> :- <subgoall>,<subgoal2>,...,<subgoaln> 

is written in MRS as 

(if (and <subgoall> <subgoal2> ... <subgoaln>) <goal>). 

In addition, a fact at compile-time is represented in a different way than at run- 

time. Compile-time facts are written as 

(fact <run-time-fact> <list-of-variables> <number>). 

<list-of-variables> indicates that all the variables in the list are actually un- 

known constants in the run-time fact <run-time-fact>. <number> is the number 

of facts matching this fact pattern that are expected to be present at run-time. 

The device whose structure and behavior is captured here is called "F00". It 
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is a 4-bit adder. The database contains many literals of the form 

(VALUE (PORT <port-name> <device>) <value>). 

This is intended to mean that the value of the specified port <port> of device 

<device> is <value>. <device> is either the top-level device "F00" or parts of 

it specified in a hierarchical fashion. (PART (NUM FA i) F00) for i from 1 to 4 

stands for the ith 1-bit full adder. Each 1-bit full adder is composed of 5 gates: 1 

or gate, 2 exclusive-or gates, and 2 and gates. An example of a device at this lowest 

level is (PART 0R1 (PART (NUM FA 4.) F00)) This represents the 1st or gate 

(0R1) of the 4th 1-bit full adder (FA) of the top-level device (FOO). 

E.2     Adder Database 

E.2.1    Adder Database at Run-Time 

;;; External input« at mn-tin« 

(VALUE (POM III (PULT (IUK FA 1.) F00)) 1.) 

(VALUE (PORT III (PAKT (IUM FA 2.) F00)) 1.) 

(VALUE (PORT III (PART (IUM FA 3.) F00)) 1.) 

(VALUE (PORT III (PART (IUH FA 4.) F00)) 1.) 

(VALUE (PORT in (PART (IUH FA 1.) F00)) 1.) 

(VALUE (PORT 113 (PART (IUH FA 2.) F00>) 0.) 

(VALUE (PORT in (PART (IUH FA 3.) FOO)) 0.) 

(VALUE (PORT 113 (PART (IUH FA 4.) FOO)) 0.) 

(VALUE (PORT CII (PART (IUH FA 1.) FOO)) 0.) 
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III End of external inputs 

i t S !!!!!!! »if!!!!!!! illillilltill'tii iiiüü! !!!!!!!!!!! !!!!!!!!!!!! 

(IF (VALUE (PORT OUT (PART OR1 (PART (IUH FA 1.) FOO))) $3S8.) 

(VALUE (POET coin (PART (IUH FA 1 .) FOO)) $3E8.)) 

(IF (VALUE (PORT OUT (PART OR1 (PART (IUH FA 2.) FOO))) $358.) 

(VALUE (PORT coin (PART (IUH FA 2 .) FOO)) »368.)) 

(IF (VALUE (PORT OUT (PART 0R1 (PART (IUH FA 3.) FOO))) $354.) 

(VALUE (PORT coin (PART (IUH FA 3.) FOO)) $354.)) 

(IF (VALUE (PORT OUT (PART OR1 (PART (IUH FA 4.) FOO))) $352.) 

(VALUE (PORT com (PART (IUH FA 4 .) FOO)) »362.)) 

(IF (VALUE (PORT OUT (PART Z0R2 (PART (IUH FA 1.) FOO))) $360.) 

(VALUE (PORT SUH (PART (IUH FA 1. ) FOO)) $350.)) 

(IF (VALUE (PORT OUT (PART Z0R2 (PART (IUH FA 2.) FOO))) $348.) 

(VALUE (PORT SUM (PART (IUH FA 2. ) FOO)) (348.)) 

(IF (VALUE (PORT OUT (PART Z0R2 (PART (IUH FA 3.) FOO))) $346.) 

(VALUE (PORT SUH (PART (IUH FA 3. ) FOO)) »348.)) 

(IF (VALUE (PORT OUT (PART Z0R2 (PART (IUH FA 4.) FOO))) $344.) 

(VALUE (PORT SUH (PART (IUH FA 4. ) FOO)) $344.)) 

(IF (VALUE (PORT CII (PART (IUH FA 1. ) FOO)) $342.) 

(VALUE (PORT III (PART AID2 (PART (IUH FA 

1 rnn^ 

1.) FOO))) $342.)) 
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(VALUE (PORT III (PART AID2 (PART (IUH FA 2.) FOO))) $340.)) 

(IF (VALUE (PORT CII (PART (IUH FA 3.) FOO)) $338.) 

(VALUE (PORT III (PART AID2 (PART (IUH FA 3.) FOO))) $338.)) 

(IF (VALUE (PORT CII (PART (IUH FA 4.) FOO)) $336.) 

(VALUE (PORT III (PART AID2 (PART (IUH FA 4.) FOO))) $336.)) 
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(IF (VALUE (PORT CXI (PAKT (IUH Fl 1.) F00)) $334.) 

(VALUE (PORT IK (PART X0R2 (PART (IUH FA 1.) F00)>) »334.)) 

(IF (VALUE (PORT CQ (PART (IUH FA 2.) F00)) »332.) 

(VALUE (PORT 112 (PART I0R2 (PART (IUH FA 2.) F00)>) $332.)) 

(IF (VALUE (PORT CII (PART (IUH FA 3.) F00)) $330.) 

(VALUE (PORT 112 (PART X0R2 (PART (IUH FA 3.) FOO))) $330.)) 

(IF (VALUE (PORT CII (PART (IUH FA 4.) FOO)) $328.) 

(VALUE (PORT 112 (PART X0R2 (PART (IUK FA 4.) FOO))) $328.)) 

(IF (VALUE (PORT 112 (PART (IUH FA 1.) FOO)) $328.) 

(VALUE (PORT 112 (PART AID1 (PART (IUH FA 1.) FOO))) »328.)) 

(IF (VALUE (PORT 112 (PART (IUH FA 2.) FOO)) »324.) 

(VALUE (PORT 112 (PART AID1 (PART (IUH FA 2.) FOO))) »324.)) 

(IF (VALUE (PORT 112 (PART (IUH FA 3.) FOO)) 1322.) 

(VALUE (PORT 112 (PART AID1 (PART (IUH FA 3.) FOO))) «322.)) 

(IF (VALUE (PORT 112 (PART (IUH FA 4.) FOO)) 1320.) 

(VALUE (PORT 112 (PART AIDi (PART (IUH FA 4.) FOO))) $320.)) 

(IF (VALUE (PORT 112 (PART (IUH FA 1.) FOO)) $318.) 

(VALUE (PORT 112 (PART X0R1 (PART (IUH FA 1.) FOO))) $318.)) 

(IF (VALUE (PORT 112 (PART (IUH FA 2.) FOO)) $318.) 

(VALUE (PORT 112 (PART X0R1 (PART (IUH FA 2.) FOO))) $316.)) 

(IF (VALUE (PORT 112 (PART (IUH FA 3.) FOO)) $314.) 

(VALUE (PORT 112 (PART X0R1 (PART (IUH FA 3.) FOO))) $314.)) 

(IF (VALUE (PORT 112 (PART (IUH FA 4.) FOO)) $312.) 

(VALUE (PORT 112 (PART X0R1 (PART (IUH FA 4.) FOO))) $312.)) 

(IF (VALUE (PORT III (PART (IUH FA 1.) FOO)) $310.) 
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(VALUE (PORT III (PIKT AID1 (PIKT (IUH FA 1.) FOO))) »310.)) 

(IF (VALUE (POET III (PAKT (IUH FA 2.) FOO)) $308.) 

(VALUE (PORT III (PART ATD1 (PART (TUM FA 2.) FOO))) «308.)) 

(IF (VALUE (PORT III (PART (IUH FA 3.) FOO)) $306.) 

(VALUE (PORT III (PART ATD1 (PART (IUH FA 3.) FOO))) $300.)) 

(IF (VALUE (PORT III (PART (IUK FA 4.) FOO)) $304.) 

(VALUE (PORT III (PART AIM (PART (IUH FA 4.) FOO))) $304.)) 

(IF (VALUE (PORT III (PART (IUH FA 1.) FOO)) $302.) 

(VALUE (PORT III (PART X0R1 (PART (IUH FA 1.) FOO))) $302.)) 

(IF (VALUE (PORT III (PART (IUH FA 2.) FOO)) $300.) 

(VALUE (PORT III (PART Z0R1 (PART (IUH FA 2.) FOO))) $300.)) 

(IF (VALUE (PORT III (PART (IUH FA 3.) FOO)) $298.) 

(VALUE (PORT III (PART Z0R1 (PART (TUN FA 3.) FOO))) $298.)) 

(IF (VALUE (PORT III (PART (IUH FA 4.) FOO)) $296.) 

(VALUE (PORT III (PART Z0R1 (PART (IUH FA 4.) FOO))) $296.)) 

(IF (VALUE (PORT COUT (PART (IUH FA 1.) FOO)) $276.) 

(VALUE (PORT CII (PART (IUK FA 2.) FOO)) $275.)) 

(IF (VALUE (PORT COUT (PART (IUH FA 2.) FOO)) $273.) 

(VALUE (PORT CII (PART (IUH FA 3.) FOO)) $273.)) 

(IF (VALUE (PORT COUT (PART (IUH FA 3.) FOO)) $271.) 

(VALUE (PORT CII (PART (IUH FA 4.) FOO)) $271.)) 

(IF (VALUE (PORT OUT (PART AID2 (PART (IUH FA 1.) FOO))) $269.) 

(VALUE (PORT III (PART OKI (PART (IUH FA 1.) FOO))) $269.)) 

(IF (VALUE (PORT OUT (PART AID1 (PART (IUH FA 1.) FOO))) $267.) 

(VALUE (PORT 112 (PART 0R1 (PART (IUH FA 1.) FOO))) $267.)) 
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(IF (VALUE (PORT OUT (PART X0R1 (PiRT (IUH FA 1.) FOO))) $286.) 

(VALUE (PORT in (PART AIDS (PART (IUM FA 1.) FOO») »265.)) 

(IF (VALUE (PORT OUT (PART X0R1 (PART (IUM FA 1.) FOO») »263.) 

(VALUE (PORT III (PART X0R2 (PART (IUM FA 1.) FOO))) »283.)) 

(IF (AID (VALUE (PORT III (PART AID2 (PART (IUM FA 1.) FOO))) 1.) 

(VALUE (PORT XI2 (PART AIB2 (PART (IUM FA 1.) FOO))) »261.)) 

(VALUE (PORT OUT (PART AID2 (PART (IUM FA 1.) FOO))) »261.)) 

(IF (VALUE (PORT III (PART AID2 (PART (IUM FA 1.) FOO))) 0.) 

(VALUE (PORT OUT (PART AID2 (PART (IUM FA 1.) FOO))) 0.)) 

(IF (AID (VALUE (PORT III (PART AID1 (PART (IUM FA 1.) FOO))) 1.) 

(VALUE (PORT 112 (PART AID1 (PART (IUM FA 1.) FOO») «268.» 

(VALUE (PORT OUT (PART AID1 (PART (IUM FA 1.) FOO))) $258.)) 

(IF (VALUE (PORT III (PART AID1 (PART (IUM FA 1.) FOO))) 0.) 

(VALUE (PORT OUT (PART AID1 (PART (IUM FA 1.) FOO))) 0.)) 

(IF (AID (VALUE (PORT HI (PART 0R1 (PART (IUM FA 1.) FOO))) 0.) 

(VALUE (PORT 112 (PART 0R1 (PART (IUM FA 1.) FOO))) $26S.» 

(VALUE (PORT OUT (PART 0R1 (PART (IUM FA 1.) FOO))) ♦2BB.)) 

(IF (VALUE (PORT III (PART 0R1 (PART (IUM FA 1.) FOO))) 1.) 

(VALUE (PORT OUT (PART 0R1 (PART (IUM FA 1.) FOO))) 1.)) 

(IF (AID (VALUE (PORT III (PART X0R2 (PART (IUM FA 1.) FOO)» 1.) 

(VALUE (PORT 112 (PART I0R2 (PART (IUM FA 1.) FOO))) 1.)) 

(VALUE (PORT OUT (PART X0R2 (PART (IUH FA 1.) FOO))) 0.)) 

(IF (AID (VALUE (PORT III (PART X0R2 (PART (IUM FA 1.) FOO))) 0.) 

(VALUE (PORT 112 (PART X0R2 (PART (IUM FA 1.) FOO))) 1.)) 

(VALUE (PORT OUT (PART X0R2 (PART (IUM FA 1.) FOO))) 1.)) 

(IF (AID (VALUE (PORT III (PART X0R2 (PART (IUM FA 1.) FOO») 1.) 

(VALUE (PORT 112 (PART X0R2 (PART (IUH FA 1.) FOO))) 0.)) 

(VALUE (PORT OUT (PART X0R2 (PART (IUM FA 1.) FOO))) 1.)) 
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(IF (AID (VALUE (PORT Hl (PIKT X0R2 (PAKT (IUH FA 1.) FOO))) 0.) 

(V1LUE (POET 112 (PART X0R2 (PART (IUH FA 1.) FOO))) 0.)) 

(VALUE (PORT OUT (PART X0R2 (PART (IUH FA 1.) FOO))) 0.)) 

(IF (AID (VALUS (PORT Hl (PART X0R1 (PART (IUH FA 1.) FOO))) 1.) 

(VALUE (PORT 112 (PART Z0R1 (PART (IUH FA 1.) FOO))) 1.)) 

(VALUE (PORT OUT (PART X0R1 (PART (IUH FA 1.) FOO))) 0.)) 

(IF (AID (VALUE (PORT III (PART X0R1 (PART (IUH FA 1.) FOO))) 0.) 

(VALUE (PORT 112 (PART X0R1 (PART (IUH FA 1.) FOO))) 1.)) 

(VALUE (PORT OUT (PART X0R1 (PART (IUH FA 1.) FOO))) 1.)) 

(IF (AID (VALUE (PORT III (PART X0R1 (PART (IUH FA 1.) FOO))) 1.) 

(VALUE (PORT 112 (PART X0R1 (PART (IUH FA 1.) FOO))) 0.)) 

(VALUE (PORT OUT (PART X0R1 (PART (IUH FA 1.) FOO))) 1.)) 

(IF (AID (VALUE (PORT III (PART I0R1 (PART (IUH FA 1.) FOO))) 0.) 

(VALUE (PORT 112 (PART X0R1 (PART (IUH FA 1.) FOO))) 0.)) 

(VALUE (PORT OUT (PART X0R1 (PART (IUH FA 1.) FOO))) 0.)) 

(IF (VALUE (PORT OUT (PART AID2 (PART (IUH FA 2.) FOO))) $244.) 

(VALUE (PORT III (PART 0R1 (PART (IUH FA 2.) FOO))) »244.)) 

(IF (VALUE (PORT OUT (PART AID1 (PART (IUH FA 2.) FOO))) «242.) 

(VALUE (PORT 112 (PART 0R1 (PART (IUH FA 2.) FOO))) «242.)) 

(IF (VALUE (PORT OUT (PART X0R1 (PART (IUH FA 2.) FOO))) $240.) 

(VALUE (PORT 112 (PART AID2 (PART (IUH FA 2.) FOO))) «240.)) 

(IF (VALUE (PORT OUT (PART X0R1 (PART (IUH FA 2.) FOO))) $238.) 

(VALUE (PORT III (PART X0R2 (PART (IUH FA 2.) FOO))) $238.)) 

(IF (AID (VALUE (PORT III (PART AID2 (PART (IUH FA 2.) FOO))) 1.) 

(VALUE (PORT 112 (PART AID2 (PART (IUH FA 2.) FOO))) »236.)) 

(VALUE (PORT OUT (PART AID2 (PART (IUH FA 2.) FOO))) «238.)) 

(IF (VALUE (PORT III (PART AID2 (PART (IUH FA 2.) FOO))) 0.) 
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(VALUE (PORT OUT (PART 1ID2 (PART (IUH FA 2.) F00))) 0.)) 

(IF (AID (VALUE (PORT III (PART AID1 (PART (IUH FA 2.) FOO))) 1.) 

(VALUE (PORT 112 (PART AID1 (PART (IUH FA 2.) FOO») »233.)) 

(VALUE (PORT OUT (PART AID1 (PART (IUH FA 2.) FOO») »233.)) 

(IF (VALUE (PORT III (PART AIM (PART (IUH FA 2.) FOO))) 0.) 

(VALUE (PORT OUT (PART AIDi (PART (IUH FA 2.) FOO))) 0.)) 

(IF (AID (VALUE (PORT III (PART 0R1 (PART (IUH FA 2.) FOO))) 0.) 

(VALUE (PORT 112 (PART 0R1 (PART (IUH FA 2.) FOO))) $230.)) 

(VALUE (PORT OUT (PART 0R1 (PART (IUH FA 2.) FOO))) $230.)) 

(IF (VALUE (PORT III (PART 0R1 (PART (IUH FA 2.) FOO))) 1.) 

(VALUE (PORT OUT (PART 0R1 (PART (IUH FA 2.) FOO))) 1.)) 

(IF (AID (VALUE (PORT III (PART X0R2 (PART (IUH FA 2.) FOO))) 1.) 

(VALUE (PORT 112 (PART X0R2 (PART (IUH FA 2.) FOO))) 1.)) 

(VALUE (PORT OUT (PART X0R2 (PART (IUH FA 2.) FOO») 0.)) 

(IF (AID (VALUE (PORT III (PART X0R2 (PART (IUH FA 2.) FOO))) 0.) 

(VALUE (PORT 112 (PART X0R2 (PART (IUH FA 2.) FOO))) 1.)) 

(VALUE (PORT OUT (PART X0R2 (PART (IUH FA 2.) FOO))) 1.)) 

(IF (AID (VALUE (PORT III (PART X0R2 (PART (IUH FA 2.) FOO))) 1.) 

(VALUE (PORT 112 (PART X0R2 (PART (IUH FA 2.) FOO))) 0.)) 

(VALUE (PORT OUT (PART I0R2 (PART (IUH FA 2.) FOO))) 1.)) 

(IF (AID (VALUE (PORT III (PART X0R2 (PART (IUH FA 2.) FOO))) 0.) 

(VALUE (PORT 112 (PART X0R2 (PART (IUH FA 2.) FOO))) 0.)) 

(VALUE (PORT OUT (PART X0R2 (PART (IUH FA 2.) FOO))) 0.)) 

(IF (AID (VALUE (PORT III (PART X0R1 (PART (IUH FA 2.) FOO))) 1.) 

(VALUE (PORT 112 (PART X0R1 (PART (IUH FA 2.) FOO))) 1.)) 

(VALUE (PORT OUT (PART I0R1 (PART (IUH FA 2.) FOO))) 0.)) 

(IF (AID (VALUE (PORT III (PART I0R1 (PART (IUH FA 2.) FOO))) 0.) 

(VALUE (PORT 112 (PART I0R1 (PART (IUH FA 2.) FOO))) 1.)) 
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(VALUE (PORT OUT (PART XOR1 (PART (IUH FA 2.) F00))) 1.)) 

(IF (AID (VALUE (PORT III (PART XOR1 (PART (IUH FA 2.) FOO))) 1.) 

(VALUE (PORT I« (PART XOR1 (PART (IUH FA 2.) FOO))) 0.)) 

(VALUE (PORT OUT (PART X0R1 (PART (IUH FA 2.) F00))> 1.)) 

(IF (AID (VALUE (PORT III (PART X0R1 (PART (IUH FA 2.) FOO))) 0.) 

(VALUE (PORT 112 (PART X0R1 (PART (IUH FA 2.) FOO))) 0.)) 

(VALUE (PORT OUT (PART X0R1 (PART (IUH FA 2.) FOO))) 0.)) 

(IF (VALUE (PORT OUT (PART AID2 (PART (IUH FA 3.) FOO))) $219.) 

(VALUE (PORT III (PART 0R1 (PART (IUH FA 3.) FOO))) »219.)) 

(IF (VALUE (PORT OUT (PART AID1 (PART (IUH FA 3.) FOO))) $217.) 

(VALUE (PORT 112 (PART 0R1 (PART (IUH FA 3.) FOO))) $217.)) 

(IF (VALUE (PORT OUT (PART X0R1 (PART (IUH FA 3.) FOO))) $218.) 

(VALUE (PORT 112 (PART AID2 (PART (IUH FA 3.) FOO))) $218.)) 

(IF (VALUE (PORT OUT (PART X0R1 (PART (IUH FA 3.) FOO))) «213.) 

(VALUE (PORT III (PART X0R2 (PART (IUH FA 3.) FOO))) »213.)) 

(IF (AID (VALUE (PORT III (PART AID2 (PART (IUH FA 3.) FOO))) 1.) 

(VALUE (PORT 112 (PART AID2 (PART (IUH FA 3.) FOO))) $211.)) 

(VALUE (PORT OUT (PART AID2 (PART (IUH FA 3.) FOO))) $211.)) 

(IF (VALUE (PORT III (PART AID2 (PART (IUH FA 3.) FOO))) 0.) 

(VALUE (PORT OUT (PART AID2 (PART (IUH FA 3.) FOO))) 0.)) 

(IF (AID (VALUE (PORT III (PART AID1 (PART (IUH FA 3.) FOO))) 1.) 

(VALUE (PORT 112 (PART AID1 (PART (IUH FA 3.) FOO))) $208.)) 

(VALUE (PORT OUT (PART AID1 (PART (IUH FA 3.) FOO))) $208.)) 

(IF (VALUE (PORT III (PART AID1 (PART (IUH FA 3.) FOO))) 0.) 

(VALUE (PORT OUT (PART AID1 (PART (IUH FA 3.) FOO))) 0.)) 

(IF (AID (VALUE (PORT III (PART 0R1 (PART (IUH FA 3.) FOO))) 0.) 

(VALUE (PORT 112 (PART 0R1 (PART (IUH FA 3.) FOO))) $206.)) 
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(VALUE (POM OUT (P1RT OKI (PART (IUH FA 3.) FOO))) «aOB.)) 

(IF (VALUE (PORT III (PART 0R1 (PART (IUH FA 3.) FOO))) 1.) 

(VALUE (PORT OUT (PART OR1 (PART (IUH FA 3.) FOO))) 1.)) 

(IF (AID (VALUE (PORT III (PART XOR2 (PART (IUH FA 3.) FOO))) 1.) 

(VALUE (PORT 112 (PART I0R2 (PART (IUH FA 3.) FOO))) 1.)) 

(VALUE (PORT OUT (PART X0R2 (PART (IUH FA 3.) FOO))) 0.)) 

(IF (AID (VALUE (PORT HI (PART X0R2 (PART (IUH FA 3.) FOO))) 0.) 

(VALUE (PORT 112 (PART X0R2 (PART (IUH FA 3.) FOO))) 1.)) 

(VALUE (PORT OUT (PART X0R2 (PART (IUH FA 3.) FOO))) 1.)) 

(IF (AID (VALUE (PORT III (PART I0R2 (PART (IUH FA 3.) FOO))) 1.) 

(VALUE (PORT 112 (PART X0R2 (PART (IUH FA 3.) FOO))) 0.)) 

(VALUE (PORT OUT (PART I0R2 (PART (IUH FA 3.) FOO))) 1.)) 

(IF (AID (VALUE (PORT III (PART X0R2 (PART (IUH FA 3.) FOO))) 0.) 

(VALUE (PORT 112 (PART I0R2 (PART (IUH FA 3.) FOO))) 0.)) 

(VALUE (PORT OUT (PART X0R2 (PART (IUH FA 3.) FOO))) 0.)) 

(IF (AID (VALUE (PORT III (PART X0R1 (PART (IUH FA 3.) FOO))) 1.) 

(VALUE (PORT 112 (PART I0R1 (PART (IUH FA 3.) FOO))) 1.)) 

(VALUE (PORT OUT (PART X0R1 (PART (IUH FA 3.) FOO))) 0.)) 

(IF (AID (VALUE (PORT III (PART X0R1 (PART (IUH FA 3.) FOO))) 0.) 

(VALUE (PORT 112 (PART X0R1 (PART (IUH FA 3.) FOO))) 1.)) 

(VALUE (PORT OUT (PART X0R1 (PART (IUH FA 3.) FOO))) 1.)) 

(IF (AID (VALUE (PORT III (PART X0R1 (PART (IUH FA 3.) FOO))) 1.) 

(VALUE (PORT 112 (PART X0R1 (PART (IUH FA 3.) FOO))) 0.)) 

(VALUE (PORT OUT (PART I0R1 (PART (IUH FA 3.) FOO))) 1.)) 

(IF (AID (VALUE (PORT III (PART X0R1 (PART (IUH FA 3.) FOO))) 0.) 

(VALUE (PORT I« (PART X0R1 (PART (IUH FA 3.) FOO))) 0.)) 

(VALUE (PORT OUT (PART I0R1 (PART (IUH FA 3.) FOO))) 0.)) 

(If (VALUE (PORT OUT (PART AID2 (PART (IUH FA 4.) FOO))) «194.) 
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(VALUB (PORT III (PIKT OR1 (PART (IUH FA 4.) TOO))) »194.)) 

(IP (VALUB (PORT OUT (PART AID1 (PART (IUH FA 4.) FOO))) »192.) 

(VALUE (PORT 112 (PART OR1 (PART (IUH FA 4.) FOO)» $192.)) 

(IF (VALUB (PORT OUT (PART XOR1 (PART (IUH FA 4.) FOO))) «190.) 

(VALUB (PORT 113 (PART AID3 (PART (IUH FA 4.) FOO))) »190.)) 

(IF (VALUB (PORT OUT (PART X0R1 (PART (IUH FA 4.) FOO))) $188.) 

(VALUB (PORT III (PART X0R2 (PART (IUH FA 4.) FOO))) «188.» 

(IF (AID (VALUE (PORT III (PART AID2 (PART (IUH FA 4.) FOO))) 1.) 

(VALUE (PORT 112 (PART AID2 (PART (IUH FA 4.) FOO))) $186.)) 

(VALUE (PORT OUT (PART AID2 (PART (IUH FA 4.) FOO))) »188.)) 

(IF (VALUB (PORT III (PART AID2 (PART (IUH FA 4.) FOO))) 0.) 

(VALUB (PORT OUT (PART AID2 (PART (IUH FA 4.) FOO))) 0.)) 

(IF (AID (VALUE (PORT Hl (PART AID1 (PART (IUH FA 4.) FOO))) 1.) 

(VALUE (PORT 112 (PART AID1 (PART (IUH FA 4.) FOO))) »183.)) 

(VALUB (PORT OUT (PART AID1 (PART (IUH FA 4.) FOO))) »183.)) 

(IF (VALUB (PORT III (PART AID1 (PART (IUH FA 4.) FOO))) 0.) 

(VALUE (PORT OUT (PART AID1 (PART (IUH FA 4.) FOO))) 0.)) 

(IF (AID (VALUE (PORT III (PART 0R1 (PART (IUH FA 4.) FOO))) 0.) 

(VALUB (PORT 112 (PART 0R1 (PART (IUH FA 4.) FOO))) »180.)) 

(VALUB (PORT OUT (PART 0R1 (PART (IUH FA 4.) FOO))) »180.)) 

(IF (VALUB (PORT III (PART 0R1 (PART (IUH FA 4.) FOO))) 1.) 

(VALUB (PORT OUT (PART 0R1 (PART (IUH FA 4.) FOO))) 1.)) 

(IF (AID (VALUB (PORT III (PART X0R2 (PART (IUH FA 4.) FOO))) 1.) 

(VALUB (PORT 112 (PART X0R2 (PART (IUH FA 4.) FOO))) 1.)) 

(VALUE (PORT OUT (PART X0R2 (PART (IUH FA 4.) FOO))) 0.)) 

(IF (AID (VALUE (PORT III (PART X0R2 (PART (IUH FA 4.) FOO))) 0.) 

(VALUE (PORT 112 (PART X0R2 (PART (IUH FA 4.) FOO))) 1.)) 
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(VALUE (PORT OUT (PART X0R2 (PART (IUH FA 4.) FOO))) 1.)) 

(IF (AID (VALUE (PORT Ml (PART X0R2 (PART (IUH FA 4.) FOO») 1.) 

(VALUE (PORT 112 (PART I0R2 (PART (IUH FA 4.) FOO))) 0.)) 

(VALUE (PORT OUT (PART I0R2 (PART (IUH FA 4.) FOO))) 1.)) 

(IF (AID (VALUE (PORT III (PART I0R2 (PART (IUH FA 4.) FOO))) 0.) 

(VALUE (PORT 112 (PART X0R2 (PART (IUH FA 4.) FOO))) 0.)) 

(VALUE (PORT OUT (PART I0R2 (PART (IUH FA 4.) FOO))) 0.)) 

(IF (AID (VALUE (PORT III (PART X0R1 (PART (IUH FA 4.) FOO))) 1.) 

(VALUE (PORT 112 (PART X0R1 (PART (IUH FA 4.) FOO))) 1.)) 

(VALUE (PORT OUT (PART X0R1 (PART (IUH FA 4.) FOO))) 0.)) 

(IF (AID (VALUE (PORT III (PART X0R1 (PART (IUH FA 4.) FOO))) 0.) 

(VALUE (PORT 112 (PART X0R1 (PART (IUH FA 4.) FOO))) 1.» 

(VALUE (PORT OUT (PART X0R1 (PART (IUH FA 4.) FOO))) 1.» 

(IF (AID (VALUE (PORT III (PART X0R1 (PART (IUH FA 4.) FOO))) 1.) 

(VALUE (PORT 112 (PART X0R1 (PART (IUH FA 4.) FOO))) 0.)) 

(VALUE (PORT OUT (PART X0R1 (PART (IUH FA 4.) FOO))) 1.)) 

(IF (AID (VALUE (PORT III (PART X0R1 (PART (IUH FA 4.) FOO))) 0.) 

(VALUE (PORT 112 (PART X0R1 (PART (IUH FA 4.) FOO))) 0.)) 

(VALUE (PORT OUT (PART X0R1 (PART (IUH FA 4.) FOO))) 0.)) 

E.2.2    Adder Database at Compile-Time 

The rules axe the same as the rules in the run-time database and will not be repeated 

here. The facts are written in a different fashion and these are given below. 

;!;;;;;;;;;;;sw»;;;s;»s« ;;;;;;;;;;;;-ü- '  

;;; External input» at eoopil»-tim« 

(fact (VALUE (PORT III (PART (IUH FA 1.) FOO)) *x) ($x) 1) 

(fact (VALUE (PORT III (PART (IUH FA 2.) FOO)) *x) (**) 1) 
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(fact (VALUE (POET III (PAW (IUH FA 3.) FOO)> *x) (*x) 1) 

(fact (VALUE (POM III (PART (IUH FA 4.) FOO)) $x) (tx) 1) 

(fact (VALUE (PORT ZI2 (PART (IUH FA 1.) FOO)) *x) ($x) 1) 

(fact (VALUE (PORT 112 (PART (IUH FA 2.) FOO)) *x) (tx) 1) 

(fact (VALUE (PORT 112 (PART (IUH FA 3.) FOO)) tx) (tx) 1) 

(fact (VALUE (PORT 112 (PART (IUH FA 4.) FOO)) tx) (tx) 1) 

(fact (VALUE (PORT CII (PART (IUH FA 1.) FOO)) tx) ($x) 1) 
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;;;   End of «xtarnal inputs 

;!!;i!!!!;if!5i!!iJ!i»!!iii!!!!!!!!!i!ii 

E.3     Goal 

E.3.1     Goal at Run-Time 

The goal is to determine the value of the "COUT" port of the fourth full-adder 

in the top-level device "FOO". The fourth full-adder is associated with the highest 

order bit. The goal is given below. 

(VALUE (PORT COUT (PART (NUM FA 4) FOO)) $X) 

E.3.2    Goal at Compile-Time 

The syntax for goals at compile-time is similar to that for facts at compile-time. 

"GOAL" is the predicate as opposed to "FACT". The first term is the fact and 

the next two terms are the list of unknown constants and the number of goals 

respectively. The goal is shown below. 

(GOAL (VALUE (PORT COUT (PART (NUM FA 4.) FOO)) $X) NIL 1.) 
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E.4    Domain Information 

The cardinalities of the domains of all variables is 2 because variables can be bound 

to either 0 or 1. 

E.5    Partitioning Database 

In this database, a fact of the form 

(PARTITION <FACT-PATTERN>) 

indicates that all facts that match the fact pattern <FACT-PATTERN> or all rules 

whose consequents (or heads) match the fact pattern are included in one partition. 

Variables are now all symbols that begin with "&". The notation for variables 

is different here because there are two types of variables in MRS. Variables that 

begin with "$" are base-level variables and variables that begin with "&" are meta- 

level variables. The base-level database describes the application of interest and 

the meta-level describes information about the base-level. The distinction is not 

terribly important here except that the partitioning database is better thought of 

as containing meta-level information. The partitioning database is shown below. 

(PARTITIOI (V1LUE (PORT III (PART (IUH FA 1) F00)) «)) 

(PARTITIOI (VALUE (PORT III (PART «UH FA 2) F00)) M)) 

(PARTITIOI (VAtUB (PORT III (PART (IUH FA 3) FOO)) «)) 

(PARTITIOI (VALUE (PORT III (PART (IUH FA 4) FOO» «)) 

(PARTITIOI (VALUE (PORT 112 (PART (IUU FA 1) FOO)) «)) 

(PARTITIOI (VALUE (PORT 112 (PART (IUH FA 2) FOO)) *D) 

(PARTITIOI (VALUE (PORT 112 (PART (IUH FA 3) FOO)) «)) 

(PARTITIOI (VALUE (PORT 112 (PART (IUH FA 4) FOO)) «)) 

(PARTITIOI (VALUE (PORT CII (PART (IUH FA 1) FOO)) *X» 

(PARTITIOI (VALUE (PORT COUT (PART (IUH FA 1) FOO)) «)) 

(PARTITIOI (VALUE (PORT COUT (PART (IUH FA 2) FOO)) *X» 

(PARTITIOI (VALUE (PORT COUT (PART (IUH FA 3) FOO)) «)) 

(PARTITIOI (VALUE (PORT COUT (PART (IUH FA 4) FOO)) tt» 

(PARTITIOI (VALUE (PORT SUH (PART (IUH FA 1) FOO)) «)) 

(PARTITIOI (VALUE (PORT SUH (PART (IUH FA 2) FOO)) «)) 
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(PARTITIOI (VALUE (PORT SUH (PART HUM FA 3) FOO)) AD) 

(PARTITIOI (VALUE (PORT SUH (PART (IUH FA 4) FOO)) AZ)) 

(PARTITIOI (VALUE (PORT III (PART AIDS (PART (IUH FA 1) FOO))) AT)) 

(PARTITIOI (VALUE (PORT III (PART AID2 (PART (IUH FA 2) FOO))) AZ)) 

(PARTITIOI (VALUE (PORT III (PART AID2 (PART (IUH FA 3) FOO))) AD) 

(PARTITIOI (VALUE (PORT III (PART AID2 (PART (IUH FA 4) FOO))) AD) 

(PARTITIOI (VALUE (PORT 112 (PART Z0R2 (PART (IUH FA 1) FOO))) AX)) 

(PARTITIOI (VALUE (PORT I» (PART ZOR2 (PART (IUH FA 2) FOO))) AZ)) 

(PARTITIOI (VALUE (PORT 112 (PART Z0R2 (PART (IUH FA 3) FOO))) AD) 
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(PARTITIOI (VALUE (PORT 112 (PART IOR2 (PART (IUH FA 4) FOO))) AZ)) 

(PARTITIOI (VALUE (PORT 112 (PART AIM (PART (IUH FA 1) FOO))) AI)) 

(PARTITIOI (VALUE (PORT 112 (PART AIM (PART (IUH FA 2) FOO))) AZ)) 

(PARTITIOI (VALUE (PORT 112 (PART AID1 (PART (IUH FA 3) FOO))) AI)) 

(PARTITIOI (VALUE (PORT 112 (PART AID1 (PART (IUH FA 4) FOO))) AI)) 

(PARTITIOI (VALUE (PORT 112 (PART IOR1 (PART (IUH FA 1) FOO))) AZ)) 

(PARTITIOI (VALUE (PORT 112 (PART ZOR1 (PART (IUH FA 2) FOO))) AZ)) 

(PARTITIOI (VALUE (PORT 112 (PART ZOR1 (PART (IUH FA 3) FOO))) AZ)) 

(PARTITIOI (VALUE (PORT 112 (PART IOR1 (PART (IUH FA 4) FOO))) AZ)) 

(PARTITIOI (VALUE (PORT III (PART AID1 (PART (IUH FA 1) FOO))) AZ)) 

(PARTITIOI (VALUE (PORT III (PART AID1 (PART (IUH FA 2) FOO))) AI)) 

(PARTITIOI (VALUE (PORT III (PART AID1 (PART (IUH FA 3) FOO))) AI)) 

(PARTITIOI (VALUE (PORT III (PART AID1 (PART (IUH FA 4) FOO))) AI)) 

(PARTITIOI (VALUE (PORT III (PART XOR1 (PART (IUH FA 1) FOO))) AZ)) 

(PARTITIOI (VALUE (PORT III (PART ZOR1 (PART (IUH FA 2) FOO))) AZ)) 

(PARTITIOI (VALUE (PORT III (PART IOR1 (PART (IUH FA 3) FOO))) AI)) 

(PARTITIOI (VALUE (PORT III (PART ZOR1 (PART (IUH FA 4) FOO))) AZ)) 

(PARTITIOI (VALUE (PORT CII (PART (IUH FA 2) FOO)) AD) 

(PARTITIOI (VALUE (PORT CII (PART (IUH FA 3) FOO)) AD) 

(PARTITIOI (VALUE (PORT CII (PART (IUH FA 4) FOO)) AD) 

(PARTITIOI (VALUE (PORT III (PART OR1 (PART (IUH FA 1) FOO))) AD) 

(PARTITIOI (VALUE (PORT 112 (PART OR1 (PART (IUH FA 1) FOO))) AD) 

(PARTITIOI (VALUE (PORT 112 (PART AID2 (PART (IUH FA 1) FOO))) AD) 

(PARTITIOI (VALUE (PORT III (PART X0R2 (PART (IUH FA 1) FOO))) AD) 

(PARTITIOI (VALUE (PORT OUT (PART AID2 (PART (IUH FA 1) FOO))) AD) 

(PARTITIOI (VALUE (PORT OUT (PART AID1 (PART (IUH FA 1) FOO))) AD) 

(PARTITIOI (VALUE (PORT OUT (PART OR1 (PART (IUH FA 1) FOO))) AD) 

(PARTITIOI (VALUE (PORT OUT (PART I0R2 (PART (IUH FA 1) FOO))) AD) 

(PARTITIOI (VALUE (PORT OUT (PART ZOR1 (PART (IUH FA 1) FOO))) AZ)) 
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(PARTITIOI (VALUE (PORT III (PUT 0R1 (PART (TOM Fi 2) F00))) «)) 

(PiRTITIOI (VALUE (PORT 112 (PiRT OR1 (PART (TOM Fi 2) FOO))> «» 

(PIRTITIOI (VALUE (PORT 112 (PART AID2 (PART (TOM FA 2) F00)>> «)) 

(PARTITIOI (VALUE (PORT III (PART X0R2 (PART (TOM FA 2) FOO))) tX» 

(PARTITIOI (VALUE (PORT OUT (PART AID2 (PART (TOM FA 2) FOO))) «)) 

(PARTITIOI (VALUE (PORT OUT (PART AID1 (PART (TOM FA 2) FOO))) «)) 

(PARTITIOI (VALUE (PORT OUT (PART OR1 (PART (TOM FA 2) FOO))) «)) 

(PARTITIOI (VALUE (POST OUT (PART X0R2 (PART (TOM FA 2) FOO))) «)) 

(PARTITIOI (VALUE (PORT OUT (PART XOR1 (PART (TOM FA 2) FOO))) *X» 

(PARTITIOI (VALUE (PORT III (PART OR1 (PART (TOM FA 3) FOO))) »X)) 

(PARTITIOI (VALUE (PORT 112 (PART OR1 (PART (TOM FA 3) FOO))) «)) 

(PARTITIOI (VALUE (PORT 112 (PART AID2 (PART (TOM FA 3) FOO))) »X» 

(PARTITIOI (VALUE (PORT III (PART X0R2 (PART (TOM FA 3) FOO))) *«) 

(PARTITIOI (VALUE (PORT OUT (PART AID2 (PART (TOM FA 3) FOO))) «)) 

(PARTITIOI (VALUE (PORT OUT (PART AID1 (PART (TOM FA 3) FOO))) «)) 

(PARTITIOI (VALUE (PORT OUT (PART OR1 (PART (TOM FA 3) FOO))) «)) 

(PARTITIOI (VALUE (PORT OUT (PART X0R2 (PART (TOM FA 3) FOO))) *X)) 

(PARTITIOI (VALUE (PORT OUT (PART IOR1 (PART (TOM FA 3) FOO))) «)) 

(PARTITIOI (VALUE (PORT III (PART OR1 (PART (TOM FA 4) FOO))) «)) 

(PARTITIOI (VALUE (PORT 112 (PART OR1 (PART (TOM FA 4) FOO))) «)) 

(PARTITIOI (VALUE (PORT 112 (PART AID2 (PART (TOM FA 4) FOO))) «)) 

(PARTITIOI (VALUE (PORT III (PART X0R2 (PART (TOM FA 4) FOO))) «)) 

(PARTITIOI (VALUE (PORT OUT (PART AID2 (PART (TOM FA 4) FOO))) «)) 

(PARTITIOI (VALUE (PORT OUT (PART AID1 (PART (TOM FA 4) FOO))) «)) 

(PARTITIOI (VALUE (PORT OUT (PART OR1 (PART (TOM FA 4) FOO))) *X)) 

(PARTITIOI (VALUE (PORT OUT (PART IOR2 (PART (TOM FA 4) FOO))) *D) 

(PARTITIOI (VALUE (PORT OUT (PART XOR1 (PART (TOM FA 4) FOO))) *X)) 

E.6    Multiprocessor Characteristics 

E.6.1    Size of Multiprocessor 

First, the number of processors used in the experiment was 61. This corresponds to 

an E-size of 5 (i.e., there are 5 processors on each side of the hexagonal surface). The 
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• 4 

Figure 42: E-5 Processing Surface for FAIM-1 

processors along with their processor addresses are shown in figure E.6.1. Wrap- 

around connections from the edges of the boundary are not shown in the figure for 

the sake of simplicity. 

E.6.2    Processing Parameters 

For the cost model described in chapter 3, the only constant given a non-zero value 

is Ku—the time taken to perform a successful unification. This constant is given 

the value 50 microseconds based on an estimate of 20 KLIPS for each processor. 
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E.6.3    Communication Parameters 

The constants KUK2, and K3 used in the definition of the communication cost 

function (see chapter 3) have the values given below. 

K\ = 2 microseconds 

K2 = 2 microseconds/packet 

K3 = 1 microseconds/hop 

All messages are assumed to fit in one packet. 

E.7    Allocation Database 

E.7.1    Allocation Database for Single Copy Case 

In this database, facts of the form 
(LOC <FACT-PATTERN> <PROCESSOR-ADDRESS>) 

are intended to mean that the partition specified by 

(PARTITION <FACT-PATTERN>) 
should be allocated to the processor with the address PROCESSOR-ADDRESS>. 

The database is shown below. 

(LOC (VALUE (PORT III (PART (TOM Fi 1.) F00)) AX) (3. 7.)) 

(LOC (VALUE (PORT III (PUT (TOM Fl J.) F00>> AX) (2- 4.)) 

(LOC (VALUB (PORT III (PART (TOM Fi 3.) F00)) AX) (2. 8.)) 

(LOC (VALUE (PORT III (PART (IUH FA 4.) F00» AX) (6. 4.)) 

(LOC (VALUE (PORT H2 (PART (TOM FA 1.) F00)> AX) («• 2.)) 

(LOC (VALUE (PORT 112 (PART «UK FA 2.) F00)) AX) (B. 6.)) 

(LOC (VALUB (PORT H2 (PART (TOM FA 3.) F00)> AT) (3. 2.» 

(LOC (VALUB (PORT 112 (PART (TOM FA 4.) F00» AX) (1. 2.)) 

(LOC (VALUE (PORT CXI (PART (IUH FA 1.) F00)> «) (3. 6.)) 

(LOC (VALUE (PORT COUT (PART (TOM FA 1.) F00» AX) (8. 8.)) 

(LOC (VALUB (PORT COUT (PART (TOM FA 2.) F00)) AX) («• 2.)) 

(LOC (V1LUE (PORT COUT (PART (TOM FA 3.) F00)) AX) (0. 0.)) 

(LOC (VALUB (PORT COUT (PART (TOM FA 4.) FOO)) »X) (4. 4.)) 

(LOC (VALUB (PORT SUM (PART (TOM FA 1.) FOO)) AI) lit) 
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(LOC (VALUE (PORT SUH (PART (IUH FA 2.) FOO)) AX) ■XL) 

(LOC (VALUE .PORT SUM (PART (IUH FA 3.) FOO)) AX) IIL) 

(LOC (VALUE (PORT SUE (PART (IUH FA 4.) FOO)) AX) IIL) 

(LOC (VALUE (PORT III (PART AID2 (PART (IUH FA 1. ) FOO))) 
AX) (3. 6.)) 

(LOC (VALUE (PORT III (PART AID2 (PART (IUH FA 2. ) FOO))) AX) 
(6. 7.)) 

(LOC (VALUE (PORT III (PART AID2 (PART (IUH FA 3. ) FOO))) 
AX) (4. 1.)) 

(LOC (VALUE (PORT III (PART AIDS (PART (IUH FA 4. ) FOO))) 
AX) (7. 4.)) 

(LOC (VALUE (PORT na (PART X0R2 (PART (IUH FA 1. ) FOO))) AX) IIL) 

(LOC (VALUE (PORT 112 (PART XOR2 (PART (IUH FA 2. ) FOO))) 
AX) ■XL) 

(LOC (VALUE (PORT H2 (PART X0R2 (PART (IUH FA 3. ) FOO))) 
AX) IIL) 

(LOC (VALUE (PORT 112 (PART X0R2 (PART (IUH FA 4. ) FOO))) 
AX) ■XL' 

(LOC (VALUE (PORT 112 (PART AID1 (PART (IUH FA 1. ) FOO))) 
AX) (8. 2.)) 

(LOC (VALUE (PORT 112 (PART AID1 (PART (IUH FA 2. ) FOO))) 
AX) (4. B.)) 

(LOC (VALUE (PORT 112 (PART AID1 (PART (IUH FA 3 ) FOO))) AX) (3. 1.)) 

(LOC (VALUE (PORT 112 (PART AID1 (PART (IUH FA 4 ) FOO))) AX) (4. 4.)) 

(LOC (VALUE (PORT 112 (PART XOR1 (PART (IUH FA 1 ) FOO))) AX) (6. 2.)) 

(LOC (VALUE (PORT 112 (PART XOR1 (PART (IUH FA 2 ) FOO))) AX) (7. 8.)) 

(LOC (VALUE (PORT 112 (PART XOR1 (PART (IUH FA 3 ) FOO))) AX) (S. 1.)) 

(LOC (VALUE (PORT 112 (PART XOR1 (PART (IUH FA 4 .) FOO))) 
AX) (0. 2.)) 

(LOC (VALUE (PORT III (PART AIM (PART (IUH FA 1 .) FOO))) 
AX) (2. 8.)) 

(LOC (VALUE (PORT III (PART AID1 (PART (IUH FA 2 .) FOO))) AX) (3. 5.)) 

(LOC (VALUE (PORT III (PART AID1 (PART (IUH FA 3 .) FOO))) 
AX) (4. 2.)) 

(LOC (VALUE (PORT III (PART AID1 (PART (IUH FA 4 .) FOO))) 
AX) (6. 4.)) 

(LOC (VALUE (PORT III (PART XOR1 (PART (IUH FA 1 .) FOO))) 
AX) (3. 6.)) 

(LOC (VALUE (PORT III (PART XOR1 (PART (IUH FA 2 .) FOO))) AX) (6. 5.)) 

(LOC (VALUE (PORT III (PART XOR1 (PART (IUH FA 3 .) FOO))) 
AX) (2. 6.)) 

(LOC (VALUE (PORT III (PART XOR1 (PART (IUH FA 4 .) FOO))) 
AX) (0. 3.)) 

(LOC (VALUE (PORT CII (PART (IUH FA 2. ) FOO)) AX) (7. 7.)) 

(LOC (VALUE (PORT CII (PART (IUH FA 3. ) FOO)) »X) (6. 2.)) 

(LOC (VALUE (PORT CII (PART (IUH FA 4. ) FOO)) AX) (8. 4.)) 

(LOC (VALUE (PORT III (PART OR1 (PART (IUH FA 1. ) FOO))) 
AX) (1. 6.)) 

(LOC (VALUE (PORT 112 (PART OR1 (PART (IUH FA 1. ) FOO))) 
AX) (4. 0.)) 

(LOC (VALUE (PORT 112 (PART AIDS (PARI (IUH FA 1 .) FOO))) AX) (2 6.)) 

(LOC (VALUE (PORT III (PART XOR3 (PARI (IUH FA 1 .) FOO))] AX) IIL) 

(LOC (VALUE (PORT OU1 ■ (PART AID: 1 (PARI ' (IUH FA 1 .) FOO)) ) AX) (2 . 6.)) 

(LOC (VALUI (PORT OUT (PART AID1 L (PART (IUH FA 1 L.) FOO))) AX' (6 . 1.)) 

(LOC : (VALUI ! (PORT OUT (PART OR1 (PART (IUH FA 1 ) FOO))) AX) (4. 0.)) 

(LOC (VALUE (PORT OUT (PART X0R2 (PART (IUH FA L.) FOO))) AX) IIL) 
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(LOC (VALUE (PORT OUT (PIKT I0R1 (PART (IUM PA 1.) FOO))) AX) (3. 6.)) 

CLOC (VALUE (PORT Ml (PART OR1 (PART (IUM FA 2.) FOO))) «1) (4. 7.)) 

(LOC (VALUE (PORT 112 (PART OR1 (PART (IUK FA 2.) FOO))) AX) (3. 6.)) 

(LOC (VALUE (PORT 112 (PART AID2 (PART (IUM FA 2.) FOO))) AX) (6. 8.)) 

(LOC (VALUE (PORT III (PART I0R2 (PART (IUM FA 2.) FOO)» AX) IIL) 

(LOC (VALUE (PORT OUT (PART AID2 (PART (IUM FA 2.) FOO))) AX) (6. 7.)) 

(LOC (VALUE (PORT OUT (PART AIM (PART (IUM FA 2.) FOO))) AX) (4. 6.)) 

(LOC (VALUE (PORT OUT (PART OR1 (PART (IUM FA 2.) FOO))) AX) (3. 7.)) 

(LOC (VALUE (PORT OUT (PART X0R2 (PART (IUM FA 2.) FOO))) AX) IIL) 

(LOC (VALUE (PORT OUT (PART XOR1 (PART (IUM FA 2.) FOO))) AX) (8. 6.)) 

(LOC (VALUE (PORT III (PART OR1 (PART (IUM FA 3.) FOO))) AX) (2. 0.)) 

(LOC (VALUE (PORT 112 (PART 0R1 (PART (IUM FA 3.) FOO))) AX) (2. 1.)) 

(LOC (VALUE (PORT 112 (PART AID2 (PART (IUM FA 3.) FOO))) AX) (4. 0.)) 

(LOC (VALUE (PORT III (PART I0R2 (PART (IUM FA 3.) FOO))) AX) IIL) 

(LOC (VALUE (PORT OUT (PART AID2 (PART (IUM FA 3.) FOO))) AX) (3. 0.)) 

(LOC (VALUE (PORT OUT (PART AID1 (PART (IUM FA 3.) FOO))) AX) (3. 2.)) 

(LOC (VALUE (PORT OUT (PART 0R1 (PART (IUM FA 3.) FOO))) AX) (1. 0.)) 

(LOC (VALUE (PORT OUT (PART X0R2 (PART (IUM FA 3.) FOO))) AX) IIL) 

(LOC (VALUE (PORT OUT (PART X0R1 (PART (IUM FA 3.) FOO))) AX) (1. 6.)) 

(LOC (VALUE (PORT III (PART 0R1 (PART (IUM FA 4.) FOO))) AX) (6. 4.)) 

(LOC (VALUE (PORT 112 (PART 0R1 (PART (IUM FA 4.) FOO))) AX) (4. 4.)) 

(LOC (VALUE (PORT 112 (PART AID2 (PART (IUM FA 4.) FOO))) AX) (7. 6.)) 

(LOC (VALUE (PORT III (PART X0R2 (PART (IUM FA 4.) FOO))) AX) IIL) 

(LOC (VALUE (PORT OUT (PART AID2 (PART (IUM FA 4.) FOO))) AX) (6. 4.)) 

(LOC (VALUE (PORT OUT (PART AID1 (PART (IUM FA 4.) FOO))) AX) (4. 4.)) 

(LOC (VALUE (PORT OUT (PART 0R1 (PART (IUM FA 4.) FOO))) AX) (4. 4.)) 

(LOC (VALUE (PORT OUT (PART X0R2 (PART (IUM FA 4.) FOO))) AX) IIL) 

(LOC (VALUE (PORT OUT (PART X0R1 (PART (IUM FA 4.) FOO))) AX) (8. 6.)) 

E.7.2    Allocation Database for Multiple Copy Case 

In this database, facts of the form 

(LOC <FACT-PATTERN> <CLUSTER>) 

are intended to mean that the partition specified by 

(PARTITION <FACT-PATTERN>) 
should be allocated to the cluster of processors <CLUSTER>. A cluster specified 
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as (<n> PAl (<PA1> <PA2>.. .<PAn>) denotes <n> processors with the ad- 

dresses <PA1>, <PA2>,...,<PAn>. PAl is the central processor in this cluster 

of processors. A cluster specified by nil indicates that no processors belong to the 

cluster (i.e., the related partition is not allocated to any processor). This is reason- 

able if the partition is not used at all for proving the goals specified at compile-time. 

The location database is given below. 

OOC (VALUE (POET III (PAKT (WH FA 1.) FOO)) IX) (19. (4. 1.) ((1. S.) (0. 4.) (8. 8.) (7. 8.) (2. 0.) 

(2. 1.) (3. 2.) (4. 3.) (B. 3.) (8. 3.) (6. 2.) (2. 8.) (4. 0.) (3. 0.) (3. 1.) (4. 2.) (B. 2.) (B. 1.) 

(4. 1.)») 

(LOC (VALUE (POET III (PAET (IUH FA 2.) FOO» «> (T. (2. 3.) ((2. 2.) (1. 2.) (1. 3.) (2. 4.) (3. 4.) (3. 

3.) (2. 3.)))) 

(LOC (VALUE (POET III (PAET (IUH FA 3.) POO» tZ) (7. (2. 4.) ((2. 3.) (1. 3.) (1. 4.) (2. B.) (3. B.) (3. 

4.) (2. 4.)))) 

(LOC (VALUE (POET I« (PAET (IUH FA 4.) F00» AX) (7. (4. 3.) ((4. 2.) (3. 2.) (3. 3.) (4. 4.) (B. 4.) (5. 

3.) (4. 3.)») 

(LOC (VALUE (POET 112 (PAET (IUH FA 1.) F00» AX) (19. (0. 0.) ((8. 8.) (B. 7.) (4. 7.) (3. 7.) (7. 3.) 

<7. 4.) (8. B.) (0. 2.) (1. 2.) (2. 2.) (2. 1.) (2. 0.) (B. 8.) (4. 8.) (8. 4.) (0. 1.) (1. 1.) (1. 0.) 

(0. 0.)))) 

(LOC (VALUE (POET 112 (PAET «UK FA 2.) F00» tX> (7. (4. 2.) ((4. 1.) (3. 1.) (3. 2.) (4. 3.) (B. 3.) (5. 

2.) (4. 2.)») 

(LOC (VALUE (POET 112 (PAET (IUH FA 3.) F00» Al) (7. (7. 7.) ((7. 6.) (8. 8.) (8. 7.) (7. 8.) (8. 8.) (8. 

7.) (7. 7.)))) 

(LOC (VALUE (POET 112 (PAET (IUH FA 4.) FOO» AX) (7. (3. B.) ((3. 4.) (2. 4.) (2. B.) (3. 8.) (4. 8.) (4. 

B.) (3. 6.)») 

(LOC (VALUE (POET CII (PAET (IUH FA 1.) FOO» AI) (19. (8. 4.) («. 8.) (4. 7.) (3. 7.) (6. 2.) (6. 3.) 

(8. 4.) (7. B.) (8. 6.) (0. 2.) (1. 2.) (1. 1.) Cl. 0.) (4. 8.) (7. 3.) (7. 4.) (8. B.) (0. 1.) (0. 0.) 

(8. 4.)))) 

(LOC (VALUE (POET COUT (PAET (IUH FA 1.) FOO)) tl) (7. (7. 7.) ((7. 6.) (6. 8.) (6. 7.) (7. 8.) (8. 8.) 

(8. 7.) (7. 7.)))) 

(LOC (VALUE (POET COUT (PAET (IUH FA 2.) FOO)) M) (7. (B. 4.) ((B. 3.) (4. 3.) (4. 4.) (B. B.) (6. B.) 

(8. 4.) (B. 4.)))) 

(LOC (VALUE (POET COUT (PAET (IUH FA 3.) FOO)) *X) (1. (B. B.) ((B. B.)))) 

(LOC (VALUE (POET COOT (PAET (IUH FA 4.) FOO)) AX) (1. (4. 4.) ((4. 4.)))) 

(LOC (VALUE (POET SUH (PAET (IUH FA 1.) FOO)) kl) IIL) 

(LOC (VALUE (POET SUH (PAET (IUH FA 2.) FOO)) AX) IIL) 

(LOC (VALUE (POET SUH (PAET (IUH FA 3.) FOO)) AX) IIL) 
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(LOC  (VALOT (PORT SOT (PAKT  (IOT FA 4.)  FOO)>  AX)  «IL> 

(LOC   (VALOT (PORT III   (PART A.D2  (PART  W» Fi 1.)  FOO)))  AX)   (19.   (8.   4.)   ((S.   8.)   (4.   7.)   (3.   7.)   (6. 

a.) (6. 3.) (6. 4.) (7. S.) (8. 6.) (0. 2.) (1. 2.) (1. 1.) d- 0.) (4. 8.) (7. 3.) (7. 4.) (8. 5.) (0. 

1.) (0. 0.) (8. 4.)))) 

(LOC (VALOT (PORT 1.1 (PART AIM (PART (1. FA 1.) rOO») AX) (7. (S. I.) («• 4.) (4. 4.) (4. B.) (i. 6.) 

(6.   «•)   (8.   6.)   (5.   5.))» 
(LOC  (VALOT (PORT HI  (PART AIDS  (PART (IOT FA 3.) FOO)))  AD   (7.   (2.  4.)   ((2.  3.)   (1.  3.)   (1.  4.)   (2.   B.) 

(3. 6.) (3. 4.) (2. 4.)))) 

(LOC (VALOT (PORT HI (PART AID2 (PART (mm FA 4.) FOO))) AX) (1. (4. 5.) ((4. S.)»> 

(LOC (VALOT (PORT 112 (PART X0R2 (PART (ROT FA 1.) FOO))) tX) «L) 

(LOC (VALOT (PORT 112 (PUT X0R2 (PART (IOT FA 2.) FOO))) tt) IXL) 

(LOC (VALOT (PORT 112 (PART X0R2 (PART (IOT FA 3.) FOO))) «X) 1IL) 

(LOC (VALOT (PORT 112 (PART X0R2 (PART (IOT FA 4.) FOO))) AX) lit) 

(LOC (VALOT (PORT 1.2 (PART AH.1 (PART (IOT FA 1.) FOO))) AX) (7. (0. 0.) ((5. 8.) (4. 8.) (8. 4.) (0. 1.) 

(1.   1.)   (1.   0.)   (0.  0.)))) 
(LOC   (VALOT  (PORT 1.2   (PART A.D1   (PART  (IOT FA 2.) FOO)))  AX)   (7.   (4.   2.)   ((4.   1.)   (3.   1.)   (3.   2.)   (4.   3.) 

(S. 3.) (B. 2.) (4. 2.)))) 

(LOC (VALOT (PORT «2 (PART AID1 (PART (IOT FA 3.) FOO))) AX) (1. (3. 3.) ((3. 3.)))) 

(LOC (VALOT (PORT H2 (PART AID! (PART (IOT FA 4.) FOO))) AX) (1. (6. 4.) CCB. 4.)))) 

(LOC (VALOT (PORT H2 (PART X0R1 (PART (IOT FA 1.) FOO))) AX) (19. (4. B.) ((.. 4.) (4. 3.) (3. 3.) (2. 

3.)   (2.  4.)   (2.   B.)   (3.   ..)   (4.  7.)   (.. 7.)   (6.   7.)   (6.   8.)   (8.   B.)   (4.   4.)   (3.   4.)   (3.   B.)   (4.  8.)   (S. 

6 )   (6.  B.)   (4.   6.)))) 
(LOC   (VALOT (PORT 1.2   (PART X0R1   (PART  (IOT FA 2.) FOO)))  AX)   (7.   (1.   S.)   <(1.  4.)   (0.   4.)   (4.   0.)   (B.   1.) 

(2    8.)   (2.   B.)   (1.   B.)))) 
(LOC   (VALOT (PORT H2   (PART X0R1   (PART  0« FA 3.) FOO)))  AX)   (7.   (7.   7.)   ((7.  8.)   (8.   8.)   (8.   7.)   (7.   8.) 

(8. 8.) (8. 7.) (7. 7.)))) 

(LOC (VALOT (PORT 1.2 (PART X0R1 (PART (*. FA 4.) FOO))) AX) (1. (3. B.) ((3. ..»)> 

1., (2. 3.) (2. 4.) (3. S.) (4. 8.) (B. 8.) (8. 8.) (.....) (8. 4.) (4. 3.) (3. 3.) (3. 4.) (4. B.) (B. 

(LOC^VALOT TPORT'H^PART A.D1   (PART  (IOT FA 2.)  FOO)))   AX)   (7.   (2.   3.)   ((2.  2.)   (1.   2.)   (1.   3.)   (2.   4.) 

(3    4 )   (3.   3.)   (2.   3.)))) 

(3.   6.)   (3.  *•)   «•  «•»» 

ttoc mn CPO.T i« (PUT im cm» <- » «•> "»'» »> «• "• 3'' "*• 3>>>>       ,,..,„ 

„ .«. am, - <~> _ am m. » ..> "°»> « «•■ «• ••> «'• ••> «■ "    '   '     ' 

... «,. o., «. ... «• >•> «■ •■> «• »•> <«■ ■•' «■ " «• '■' "■ "•' °- *•' "• '■' "• *•' 

2.)   (6.  1.)   (4.  1.))» 
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ooc (VALUE (PORT m (PUT XORI (PAW am FA a.) roo») t»  (7.  (7. 4.)  ((7. 3.) (e. 3.) (8. 4.) (7. 5.) 

(8. 6.) (8. 4.) (7. 4.)))) 

OOC (VALUE (PORT I« (PIKT XORI (PUT (IUH FA 3.) POO))) »X) (7. (4. 8.) «4. 8.) (3. S.) (3. 6.) (4. 7.) 

(B. 7.) (6. 6.) (4. 8.)))) 

OOC (VALUE (POET 111 (PART X0R1 (PART (IUH FA 4.) FOO))) ft» (1. (a. 3.) ((3. 3.)))) 

(LOC (VALUE (PORT CXI (PART (IUH FA 2.) FOO)) »X) (7. (8. 7.) ((8. 6.) (7. 6.) (7. 7.) (8. 8.) (0. 4.) (0. 

3.) (8. 7.)))) 

(LOC (VALUE (PORT CII (PART (IUH FA 3.) FOO)) ft!) (7. (2. 4.) ((2. 3.) (1. 3.) (1. 4.) (2. E.) (3. S.) (3. 

4.) (2. 4.)))) 

(LOC (VALUE (PORT CII (PART (IUH FA 4.) FOO)) ft!) (1. «. 6.) ((5. 8.)))) 

(LOC (VALUE (PORT III (PART 0R1 (PART (IUH FA 1.) FOO))) fcl) (19. (4. B.) ((6. 4.) (4. 3.) (3. 3.) (2. 3.) 

(2. 4.) (2. B.) (3. 6.) (4. 7.) (B. 7.) (6. 7.) (6. 8.) (6. B.) (4. 4.) (3. 4.) (3. B.) (4. 6.) (B. 6.) 

(B. B.) (4. B.)))) 

(LOC (VALUE (PORT 112 (PART OKI (PART (IUH FA 1.) FOO))) H) (19. (0. 0.) ((8. 8.) (B. 7.) (4. 7.) (3. 7.) 

(7. 3.) (7. 4.) (8. B.) (0. 2.) (1. 2.) (2. 2.) (2. 1.) (2. 0.) (B. 8.) (4. 8.) (8. 4.) (0. 1.) (1. 1.) 

(1. 0.) (0. 0.)))) 

(LOC (VALUE (PORT 112 (PART AID2 (PART (IUH FA 1.) FOO))) ft» (19. (4. 0.) «1. 4.) (0. 3.) (8. 7.) (7. 

7.) (7. 8.) (2. 0.) (3. 1.) (4. 2.) (B. 2.) (8. 2.) (2. 6.) (2. B.) (0. 4.) (8. 8.) (3. 0.) (4. 1.) (5. 

1.) (1. B.) (4. 0.)))) 

(LOC (VALUE (PORT HI (PART X0R2 (PART (IUM FA 1.) FOO))) *X) IIL) 

(LOC (VALUE (PORT OUT (PART AID2 (PART (IUM FA 1.) FOO))) »U (19. (4. 0.) ((1. 4.) (0. 3.) (8. 7.) (7. 

7.) (7. 8.) (2. 0.) (3. 1.) (4. 2.) (B. 2.) (8. 2.) (2. 8.) (2. B.) (0. 4.) (8. 8.) (3. 0.) (4. 1.) <B. 

1.) (1. B.) (4. 0.)))) 

(LOC (VALUB (PORT OUT (PART AID1 (PART (IUH FA 1.) FOO))) *U (19. (0. 0.) ((8. 8.) (B. 7.) (4. 7.) (3. 

7.) (7. 3.) (7. 4.) (8. B.) (0. 2.) (1. 2.) (2. 2.) (2. 1.) (2. 0.) (B. 8.) (4. 8.) (8. 4.) (0. 1.) (1. 

1.) (1. 0.) (0. 0.)))) 

(LOC (VALUB (PORT OUT (PART 0R1 (PART (IUH FA 1.) FOO)» »X) (19. (4. B.) ((B. 4.) (4. 3.) (3. 3.) (2. 3.) 

(2. 4.) (2. B.) (3. 8.) (4. 7.) (B. 7.) (8. 7.) (8. 8.) (6. B.) (4. 4.) (3. 4.) (3. B.) (4. 8.) (B. 8.) 

(B. B.) (4. 8.)))) 

(LOC (VALUE (PORT OUT (PART X0R2 (PART (IUH FA 1.) FOO))) »U IIL) 

(LOC (VALUB (PORT OUT (PART X0R1 (PART (IUH PA 1.) FOO))) ft» (19. (4. B.) ((6. 4.) (4. 3.) (3. 3.) (2. 

3.) (2. 4.) (3. B.) (3. 6.) (4. 7.) (B. 7.) (6. 7.) (8. 6.) (8. B.) (4. 4.) (3. 4.) (3. B.) (4. 6.) (S. 

8.) (B. B.) (4. B.)))) 

(LOC (VALUE (PORT III (PART 0R1 (PART (IUH FA 2.) POO))) *X) (7. (4. 2.) ((4. 1.) (3. 1.) (3. 2.) (4. 3.) 

(B.   3.)   (6.   2.)   (4.   2.)))) 

(LOC   (VALUE (PORT 112   (PART 0R1   (PART  (IUH FA 2.)  FOO)))   U)   (7.   (2.   3.)   ((2.   2.)   (1.   2.)   (1.   3.)   (2.   4.) 

(3.   4.)   (3.   3.)   (2.  3.)))) 
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(LOC (VALUE (PORT I« (PART AID2 (PART (TOM FA 2.) TOO))) «) (7. (4. 7.) ((4. 6.) (3. 6.) (3. 7.) (4. 8.) 

(5. 8.) (S. 7.) (4. 7.)))) 

(LOC (VALUB (PORT III (PART X0R2 (PART (TOM PA 2.) FOO))) *X) IIL) 

(LOC (VALUB (PORT OUT (PART AID2 (PART (TOM FA 2.) FOO») *X> (7. (7. 4.) ((7. 3.) (6. 3.) (6. 4.) (7. S.) 

(8. S.) (8. 4.) (7. 4.)))) 

(LOC (VALUB (PORT OUT (PART 1191 (P«T (TOM FA 2.) FOO))) tt) (7. (2. 3.) ((2. 2.) (1. 2.) (1. 3.) (2. 4.) 

(3. 4.) (3. 3.) (2. 3.)))) 

(LOC (VALUB (PORT OUT (PART OR1 (PART (TOM FA 2.) FOO))) «) (7. (4. 2.) ((4. 1.) (3. 1.) (3. 2.) (4. 3.) 

(5. 3.) (B. 2.) (4. 2.)))) 

(LOC (VALUE (PORT OUT (PART X0R2 (PART (TOM FA 2.) FOO))) M) IIL) 

(LOC (VALUB (PORT OUT (PART IOR1 (PART (TOM FA 2.) FOO))) «) (7. (1. 0.) ((6. 8.) (B. 8.) (0. 0.) (1. 1.) 

(2. 1.) (2. 0.) (1. 0.)))) 

(LOC (VALUB (PORT III (PART 0R1 (PART (TOM FA 3.) FOO))) *I) (7. (B. B.) ((B. 4.) (4. 4.) (4. 6.) (B. 6.) 

(6. 6.) (6. 6.) (B. B.)))) 

(LOC (VALUB (PORT 112 (PART 0R1 (PART (TOM FA 3.) FOO))) «) (7. (B. S.) ((6. 4.) (4. 4.) (4. S.) (B. 6.) 

(6. 6.) (6. B.) (B. 6.)))) 

(LOC (VALUB (PORT 112 (PART AID2 (PART (TOM FA 3.) FOO))) tX) (7. (S. S.) ((B. 4.) (4. 4.) (4. 6.) (B. 6.) 

(0. 6.) (0. E.) (B. 6.)))) 

(LOC (VALUB (PORT III (PART X0R2 (PART (TOM FA 3.) FOO))) *I) IIL) 

(LOC (VALUB (PORT OUT (PART AID2 (PART (TOM FA 3.) FOO))) *X) (7. (B. B.) ((6. 4.) (4. 4.) (4. B.) (B. 6.) 

(0. S.) (6. S.) (6. 6.)))) 

(LOC (VALUE (PORT OUT (PART AID1 (PART (TOM FA 3.) FOO))) *I> (7. (B. B.) ((B. 4.) (4. 4.) (4. 6.) (B. 6.) 

(6. 6.) (6. B.) (B. B.)))) 

(LOC (VALUE (PORT OUT (PART 0R1 (PART (TOM FA 3.) FOO))) M) (7. (B. B.) ((6. 4.) (4. 4.) (4. B.) (B. 6.) 

(8. 6.) (6. B.) (B. B.)))) 

(LOC (VALUB (PORT OUT (PART X0R2 (PART (TOM FA 3.) FOO))) *X) IIL) 

(LOC (VALUB (PORT OUT (PART X0R1 (PART (TOM FA 3.) FOO))) K) (7. (B. S.) ((B. 4.) (4. 4.) (4. B.) (B. 8.) 

(8. 6.) (6. B.) (B. B.)))) 

(LOC (VALUE (PORT III (PART 0R1 (PART (TOM FA 4.) FOO))) *X) (1. (B. 4.) ((B. 4.)))) 

(LOC (VALUB (PORT 112 (PART 0R1 (PART (TOM FA 4.) FOO))) tt) (1. (4. 4.) ((4. 4.)))) 

(LOC (VALUB (PORT 112 (PART AID2 (PART (TOM FA 4.) FOO))) *X) (1. (4. 4.) ((4. 4.)))) 

(LOC (VALUB (PORT III (PART X0R2 (PART (TOM FA 4.) FOO))) «) IIL) 

(LOC (VALUB (PORT OUT (PART AID2 (PART (TOM FA 4.) FOO))) tX) (1. (6. B.) ((B. B.)))) 

(LOC (VALUE (PORT OUT (PART AIM (PART (TOM FA 4.) FOO))) *I) (1. (6. 4.) ((B. 4.)))) 

(LOC (VALUB (PORT OUT (PART 0R1 (PART (TOM FA 4.) FOO))) *X) (1. (4. 4.) ((4. 4.)))) 

(LOC (VALUE (PORT OUT (PART I0R2 (PART (TOM FA 4.) FOO))) tX) IIL) 

(LOC (VALUE (PORT OUT (PART X0R1 (PART (TOM FA 4.) FOO))) *X) (1. (3. 4.) ((3. 4.)))) 
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